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LINEAR SYSTEMS
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with Application to Analysis and Design
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Abstract—The application of the Gershgorin circle theorem and some of its derivatives to
estimating matrix eigenvalues is considered. The obtained results are developed to design a
localization region for matrix eigenvalues with interval-indefinite constant and non-stationary
elements. The concept of e-circles is introduced to obtain more accurate estimates of these
regions than when using Gershgorin circles. The obtained results are applied to the stability
analysis of network systems, where it is shown that the proposed methods allows one to analyze
a network with a much larger number of agents than when using methods for solving linear
matrix inequalities in CVX and Yalmip/SeDuMi, as well as the eig (for calculating matrix
eigenvalues) and lyap (for solving the Lyapunov equation) algorithms in MatLab. It is shown
that if the developed methods are applied not to the system itself, but to the result obtained
using the Lyapunov function method, then it is possible to study systems with matrices without
diagonal dominance. This allowed us to consider the modification of the Demidovich condition
for systems with non-stationary parameters and the design of the control law for non-stationary
systems with matrices without diagonal dominance. All the obtained results are illustrated by
numerical modeling.

Keywords : Gershgorin circle theorem, matrix eigenvalue localization domain, stability, control

DOI: 10.31857/S0005117925060012

1. INTRODUCTION

When analyzing the properties of dynamic systems and design of the control law, one of the key
questions is whether the system is stable. Currently, various methods and approaches are used to
determine stability: calculating the eigenvalues of the matrix [1], various algebraic and frequency
stability criteria [1], the Lyapunov function method [1], divergent methods for studying stability [2],
etc.

This paper focuses on design the localization domain of the eigenvalues of matrices with the
application of the obtained result to the analysis and design of control laws. To construct the
localization domain of the eigenvalues, the Gershgorin circle theorem [3–5] (hereinafter simply the
Gershgorin theorem) and some of its consequences will be considered, and new results will be
obtained on the generalization of this theorem to the case of parametrically indefinite matrices and
matrices with non-stationary parameters.

Gershgorin theorem and its various modifications have been repeatedly considered in the litera-
ture. The interest in this theorem is associated with a simple method for determining the domain
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500 FURTAT

of localization of eigenvalues. Gershgorin theorem often leads to the study of systems containing
matrices with diagonal dominance. In particular, such systems were studied in [6–8] and were
called super-stable (if all Gershgorin circles are entirely in the left half-plane of the complex plane).
It is shown that the analysis and design of control laws leads to linear programming problems.
In [9–13], refinement of localization regions is obtained in the form of averaged estimates, using
l1 vector norms, etc., and in [14, 15], a design of static linear control laws using Gershgorin the-
orem is proposed. In [16–18], the application of Gershgorin theorem to the study of the stability
of models in the chemical industry, models of electrical networks with three-phase generators, and
biological models of epidemics is considered.

An analysis of the literature showed that when determining a localization region for the eigen-
values of matrices, Gershgorin theorem has advantages in the simplicity of its application, a convex
procedure for finding the localization region, and low computational costs. However, limitations
in the application of this theorem are associated with overestimated estimates of the localization
region and consideration of matrices with diagonal dominance (or reduced to them using a diago-
nal matrix for transforming the basis). The requirement of diagonal dominance is also significantly
restrictive in the design of the control law.

This paper will consider the solution of the following problems:

(1) estimates and localization regions of the eigenvalues of a constant matrix will be considered;

(2) localization regions of the eigenvalues of a matrix with interval parametric uncertainty will be
obtained;

(3) the following will be considered as examples of application of the obtained results:

(a) the problem of synchronization of network systems with a large number of scalar agents,
where it will be shown that the proposed results can be applied to the stability analysis
of a much larger number of agents than when using the methods for solving linear
matrix inequalities in CVX and Yalmip/SeDuMi, as well as the eig (for calculating the
eigenvalues of a matrix) and lyap (for solving the Lyapunov equation) algorithms in
MatLab;

(b) modification of the Demidovich condition (on the stability of linear systems with non-
stationary parameters [19](Theorem 6.1), [23]) to systems with interval-uncertain non-
stationary parameters and with the matrix of the original system without diagonal dom-
inance;

(c) the problem of finding a matrix in a linear control law using linear matrix inequalities
for objects with a matrix without diagonal dominance.

The following notations are used in the paper: C is the set of complex numbers, R
n is the

n-dimensional Euclidean space with the vector norm | · |, Rn×m is the set of all real matrices of
dimension n × m with the induced matrix norm ‖Q‖, λi{Q} is the ith eigenvalue of the square
matrix Q, �{λi{Q}} is the real part of the ith eigenvalue of the square matrix Q, �{λi{Q}} is
the imaginary part of the ith eigenvalue of the square matrix Q, I is the identity matrix of the
corresponding order, the matrix Q ∈ R

n×m will also be denoted as (qij), i = 1, . . . , n, j = 1, . . . ,m.

2. ESTIMATES OF THE LOCALIZATION DOMAIN OF EIGENVALUES

2.1. Constant Matrices

In this section, estimates will be obtained for the localization region of the eigenvalues of the
matrix Q = (qij) ∈ R

n×n with constant elements. To clarify these estimates, the diagonal matrices
D = diag{d1, . . . , dn} and H = diag{h1, . . . , hn} will be additionally considered. Let us introduce
the notation of sums over rows and columns of absolute values of elements of matrices Q, D−1QD

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



GENERALIZATION OF GERSHGORIN CIRCLE THEOREM 501

and H−1QH without diagonal elements in the form

Ri(Q) =
n∑

j=1,j �=i

|qij |, Cj(Q) =
n∑

i=1,i �=j

|qij|,

RD
i (Q) =

n∑
j=1,j �=i

dj
di
|qij|, CD

j (Q) =
n∑

i=1,i �=j

di
dj

|aij |,

RH
i (Q) =

n∑
j=1,j �=i

hj
hi

|qij|, CH
j (Q) =

n∑
i=1,i �=j

hi
hj

|aij |.

Below are two lemmas that allow one to obtain lower and upper bounds on the real parts of the
eigenvalues of the matrix Q.

Lemma 1. Consider the matrix Q ∈ R
n×n. There exist di > 0, hi > 0, i = 1, . . . , n such that the

following estimates hold:

max
i

{�{λi{Q}}} � σDmax{Q} � σmax{Q},

min
i
{�{λi{Q}}} � σHmin{Q} � σmin{Q},

(1)

where

σmax(Q) = min
{
max

i
{qii +Ri(Q)},max

j
{qjj + Cj(Q)}

}
,

σmin(Q) = max
{
min
i
{qii −Ri(Q)},min

j
{qjj − Cj(Q)}

}
,

σDmax(Q) = min
D

{
max

i
{qii +RD

i (Q)},max
j

{qjj + CD
j (Q)}

}
,

σHmin(Q) = max
H

{
min
i
{qii −RH

i (Q)},min
j

{qjj − CH
j (Q)}

}
.

(2)

Proof. By Gershgorin theorem [4] all eigenvalues of Q are contained in the union of n circles

∪n
i=1

{
z ∈ C : |z − qii| �

n∑
j=1,j �=i

|qij|
}
. Since QT has the same eigenvalues as Q, all eigenvalues of

Q are also contained in the union of n circles ∪n
i=1

{
z ∈ C : |z − qii| �

n∑
j=1,j �=i

|qji|
}
. Therefore,

σmin{Q} � min
i
{�{λi{Q}}} and σmax{Q} � max

i
{�{λi{Q}}}.

Now consider the diagonal matrix D = diag{d1, . . . , dn}. It is known that the eigenvalues of
the matrices D−1QD and Q do not change. However, by varying the coefficients di, the radii

of the Gershgorin circles for the matrix Q can be changed in the form ∪n
i=1

{
z ∈ C : |z − qii| �

n∑
j=1,j �=i

dj
di
|qij|

}
and for the matrix QT in the form ∪n

i=1

{
z ∈ C : |z − qii| �

n∑
j=1,j �=i

di
dj
|qji|

}
. There-

fore, there exist di > 0, i = 1, . . . , n such that σDmax{Q} � σmax{Q}. However, it is impossible to
simultaneously decrease the radii of all circles by varying di, i.e. when the radii of some circles
decrease, the radii of others increase. Therefore, to obtain the estimate σHmin{Q} � σmin{Q}, the
matrix H is used instead of D.
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502 FURTAT

Lemma 2. Consider the matrix Q ∈R
n×n. There exist di > 0, hi > 0, i= 1, . . . , n and α, β ∈ [0, 1]

such that the following estimates hold:

max
i

{�{λi{Q}}} � σD,α
max{Q} � σαmax{Q},

min
i
{�{λi{Q}}} � σH,β

min{Q} � σβmin{Q},
(3)

where

σαmax(Q) = min
α

{
max

i
{qii + [Ri(Q)]α[Ci(Q)]1−α}

}
,

σβmin(Q) = max
β

{
min
i
{qii − [Ri(Q)]β [Ci(Q)]1−β}

}
,

σD,α
max(Q) = min

D,α

{
max

i
{qii + [RD

i (Q)]α[CD
i (Q)]1−α}

}
,

σH,β
min (Q) = max

H,β

{
min
i
{qii − [RH

i (Q)]β [CH
i (Q)]1−β}

}
.

(4)

Proof. According to Ostrovsky theorem [4], all eigenvalues of the matrix Q are contained in

the union of n circles ∪n
i=1

⎧⎨⎩z ∈ C : |z − qii| �
[

n∑
j=1,j �=i

|qij |
]α [

n∑
j=1,j �=i

|qji|
]1−α

⎫⎬⎭. Therefore, there

exists α such that σαmax{Q} � max
i

{�{λi{Q}}}. Analogously, we obtain that there exists β such

that σβmin{Q} � min
i
{�{λi{Q}}}.

By varying the coefficients di, the radii of the circles can be changed ∪n
i=1

{
z ∈ C : |z − qii| �[

n∑
j=1,j �=i

dj
di
|qij |

]α [
n∑

j=1,j �=i

dj
di
|qji|

]1−α
⎫⎬⎭. Consequently, there exist di, i = 1, . . . , n and α such that

σD,α
max{Q} � σαmax{Q}. From similar reasoning it follows that there exist hi, i = 1, . . . , n and β such

that σH,β
min{Q} � σβmax{Q}.

Corollary 1. If any upper bound in Lemmas 1 and 2 takes a negative value, then it is an estimate
of the degree of stability, the concept of which was introduced by Ya.Z. Tsypkin and P.V. Bromberg
in [20].

Corollary 2. From the proofs of Lemmas 1 and 2 it also follows that by the intersection of the
corresponding circles one can find the domain of localization of the eigenvalues of the matrix Q,
from which one can find not only upper and lower bounds for the real parts of the eigenvalues, but
also an upper bound for the imaginary part, which we denote as �̂{Q} � max

i
{�{λi{Q}}}. The

value of �̂{Q} is defined as the maximum value of the intersection of the circles along the imaginary
axis. If the upper bound on the real part of the eigenvalue of Q is negative, then one can obtain

an estimate of the oscillation μ in the form μ � μ̂ := �̂{Q}
|max

i
{�{λi{Q}}}| . It is well known [1] that the

oscillation is used to estimate the overshoot Π in the form Π � eπ/μ. Then the new estimate of the
degree of overshoot is defined as Π � eπ/μ̂.

Knowing the estimate of the degree of stability, the estimate of oscillation and the lower estimate
of the real part of the eigenvalue, we can construct a majorant and a minorant for the transient
process of a linear system under a single step action, which is a development of the results of
S.A. Chaplygin, N.N. Luzin, A.A. Feldbaum and A.M. Rubinchik [21, 22].

The Corollaries 1 and 2 will also be true in further generalizations of the obtained results to
perturbed matrices. Let us demonstrate what was noted in the lemmas and corollaries using the
following example.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025
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Fig. 1. Localization regions (gray region) of eigenvalues of matrix Q using estimates (1) and (3).

Example 1. Consider the matrix Q =

[
−1 −2.5
−0.5 −2

]
, which eigenvalues are −1.5± i. Figure 1

shows the localization regions (highlighted in gray) using:

• Gershgorin circle theorem (Fig. 1a);

• Lemma 1 with H = diag{1; 0.48} and D = diag{1; 2.08} (Fig. 1b);

• Lemma 2 with α = β = 0.23 and D = H = I (Fig. 1c);

• Lemma 2 with α = β = 0.01, H = diag{1; 0.51} and D = diag{1; 1.96} (Fig. 1d);

The solid circles correspond to the circles which radii are calculated from the rows of the matrix,
the dashed circles correspond to the columns of the matrix.

Table 1 contains upper and lower bounds for the real part of the eigenvalue of the matrix Q. The
accuracy is calculated as the relative error between the corresponding estimate and �{λ{Q}} =

−1.5 (e.g. |−3.5+1.5|
1.5 100% = 133.3%).

Table 1. Estimates of the real part of the eigenvalues of the matrix Q,
obtained using (1) and (3)

Figure Estimate of �{λ{Q}} Accuracy, %

Fig. 1a σmin(Q) = −3.5; σmax(Q) = 0.5 133.3

Fig. 1b σH
min(Q) = −2.72; σD

max(Q) = −0.27 82

Fig. 1c σβ
min(Q) = −2.72; σα

max(Q) = −0.27 82

Fig. 1d σH,β
min (Q) = −2.26; σD,α

max(Q) = −0.73 51.3

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



504 FURTAT

From Fig. 1 one can find estimates of the imaginary part, which are reflected in Table 2. The
accuracy is calculated as the relative error between the corresponding estimate and �{λ{Q}} = 1.

Table 2. Estimates of the imaginary part of the eigenvalues obtained
using Lemmas 1 and 2

Figure Estimate of �{λ{Q}} Accuracy, %

Fig. 1a 2.3 130

Fig. 1b 1.8 80

Fig. 1c 1.7 70

Fig. 1d 1.2 20

The best estimates of the real and imaginary parts are guaranteed by the result of Lemma 2,
where the variable parameters D, H, α and β are used simultaneously.

2.2. Perturbed Matrices

In this section, we consider the search for the regions of localization of eigenvalues for matrices
with interval-indefinite parameters:

Q(t) = Q0 +ΔQ(t) ∈ R
n×n,

Q0 = (q0ij), ΔQ(t) = (Δqij(t)),

Δq
ii
� Δqii(t) � Δqii, |Δqij(t)| � mij for i �= j.

(5)

Since the matrix elements can take any values from the admissible intervals, instead of the circles
of localization of the eigenvalues considered in the proofs of Lemmas 1 and 2, we introduce the
following figure into consideration.

Definition 1. The figure formed by the union of the circles EC = ∪q∈[q;q]
{
z ∈ C : |z− q| � R

}
is

called the e-circle.

We introduce notations for upper bounds of the sums over rows and columns of the absolute
values of the elements of the matrices Q(t), D−1Q(t)D and H−1Q(t)H, excluding the diagonal
elements, in the form

R̂i(Q) =
n∑

j=1,j �=i

(|q0ij |+mij), Ĉj(Q) =
n∑

i=1,i �=j

(|q0ij |+mij),

R̂D
i (Q) =

n∑
j=1,j �=i

dj
di
(|q0ij |+mij), ĈD

j (Q) =
n∑

i=1,i �=j

di
dj

(|q0ij |+mij),

R̂H
i (Q) =

n∑
j=1,j �=i

hj
hi

(|q0ij |+mij), ĈH
j (Q) =

n∑
i=1,i �=j

hi
hj

(|q0ij|+mij).

Now we will consider the generalization of Lemmas 1 and 2 to the case of matrices with interval-
indefinite elements. Below, in the formulations of the lemmas, we will omit the dependence of
matrices and parameters on t for the sake of simplifying the expressions.

Lemma 3. The eigenvalues of the matrix Q from (5) are in the intersection region of the e-circles

ECrow ∩ ECcol, (6)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025
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where

ECrow = ∪n
i=1ECrow,i,

ECrow,i = ∪Δqii∈[Δq
ii
;Δqii]

{
λ ∈ C : |λ− q0ii −Δqii| � R̂i(Q)

}
,

(7)

ECcol = ∪n
j=1ECcol,j ,

ECcol,j = ∪Δqjj∈[Δq
jj
;Δqjj ]

{
λ ∈ C : |λ− q0jj −Δqjj| � Ĉj(Q)

}
.

(8)

Proof. Let λ(t) be an eigenvalue of the matrix Q(t) and s(t) = col{s1(t), . . . , sn(t)} be the
eigenvector corresponding to this eigenvalue. Choose the ith component of the vector s(t) such
that sup{si(t)} � max{sup{s1(t)}, . . . , sup{si−1(t)}, sup{si+1(t)}, . . . , sup{sn(t)}}. Denote s̄i =
sup{si(t)}. From the relation λ(t)s(t) = Q(t)s(t) we write out the expression for the ith coordinate

in the form λ(t)si(t) =
n∑

j=1
qij(t)s(t) or (λ(t)− qii(t))si(t) =

n∑
j=1,j �=i

qij(t)s(t). Using the triangle

inequality, we consider the estimate

|λ(t)− qii(t)||si(t)| =

∣∣∣∣∣∣
n∑

j=1,j �=i

qij(t)sj(t)

∣∣∣∣∣∣
�

n∑
j=1,j �=i

|qij(t)sj(t)| �
n∑

j=1,j �=i

|qij(t)||sj(t)| � s̄i

n∑
j=1,j �=i

|qij(t)|.
(9)

Let us rewrite the expression (9) as |λ(t)− qii(t)||si(t)| − s̄i
n∑

j=1,j �=i
|qij(t)| � 0 or in the form

s̄i

⎛⎝|λ(t)− qii(t)|
|si(t)|
s̄i

−
n∑

j=1,j �=i

|qij(t)|

⎞⎠ � 0. (10)

Since |si(t)|
s̄i

� 1, then the expression (10) will be satisfied if inequality holds

|λ(t)− qii(t)| �
n∑

j=1,j �=i

|qij(t)|. (11)

Since Δq
ii
� Δqii(t) � Δqii and |Δqij(t)| � mij for i �= j, then we rewrite the inequality (11) as an

e-circle ECrow,i from (7).

The relation (7) is satisfied for some i. Since it is unknown which i corresponds to a given λ(t),
we can only say that λ(t) belongs to the union of e-circles ECrow = ∪n

i=1ECrow,i. This means that
all eigenvalues of the matrix Q(t) are contained in the union of e-circles ECrow.

Since the matrix QT(t) has the same eigenvalues as the matrix Q(t), then all eigenvalues of the
matrix Q(t) are contained in the union of e-circles ECcol = ∪n

j=1ECcol,j, see (8). Further reasoning

for the matrix QT(t) is similar to that for the matrix Q(t). Since the eigenvalues of the matrix Q(t)
are simultaneously in ECrow and ECcol, they are in the domain (6).

Lemma 4. Let di > 0, hi > 0, i = 1, . . . , n be given. The eigenvalues of the matrix Q from (5)
are in the intersection region of the e-circles

ECD
row ∩ ECH

col,

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



506 FURTAT

where

ECD
row = ∪n

i=1ECD
row,i,

ECD
row,i = ∪Δqii∈[Δq

ii
;Δqii]

{
λ ∈ C : |λ− q0ii −Δqii| � R̂D

i (Q)
}
,

ECH
col = ∪n

j=1ECH
col,j,

ECH
col,j = ∪Δqjj∈[Δq

jj
;Δqjj ]

{
λ ∈ C : |λ− q0jj −Δqjj| � ĈH

j (Q)
}
.

Proof. The results of Lemma 4 follow from Lemma 3 and the fact that the eigenvalues of the
matrices D−1Q(t)D, H−1Q(t)H, and Q(t) are the same.

Lemma 5. Let di > 0, i = 1, . . . , n and α ∈ [0; 1] be given. The eigenvalues of the matrix Q
from (5) are in the intersection region of the e-circles

ECD,α = ∪n
i=1EC

D,α
i ,

where

ECD,α
i = ∪Δqii∈[Δq

ii
;Δqii]

{
λ ∈ C : |λ− qii −Δqii| � [R̂D

i (Q)]α[ĈD
i (Q)]1−α

}
.

Proof. The proof of Lemma 5 follows from the proofs of Lemmas 2 and 3 and the fact that the
eigenvalues of the matrices D−1Q(t)D and Q(t) are the same.

Corollary 3. Similarly to Lemmas 1 and 2, one can write out estimates for the maximum and
minimum values of the eigenvalues of the matrix Q using the results of Lemmas 3–5, i.e. there exist
numbers di > 0, hi > 0, i = 1, . . . , n and α, β ∈ [0; 1] such that the following estimates are valid:

max
i

{
sup
t
{�{λi{Q(t)}}}

}
� σDmax{Q(t)} � σmax{Q(t)},

min
i

{
sup
t
{�{λi{Q(t)}}}

}
� σHmin{Q(t)} � σmin{Q(t)},

max
i

{
sup
t
{�{λi{Q(t)}}}

}
� σD,α

max{Q(t)} � σαmax{Q(t)},

min
i

{
sup
t
{�{λi{Q(t)}}}

}
� σH,β

min{Q(t)} � σβmin{Q(t)},

(12)

where

σmax(Q(t)) = min
{
max

i
{q0ii +Δqii + R̂i(Q)},max

j
{q0jj +Δqjj + Ĉj(Q)}

}
,

σmin(Q(t)) = max
{
min
i
{q0ii −Δqii − R̂i(Q)},min

j
{q0jj −Δqjj − Ĉj(Q)}

}
,

σDmax(Q(t)) = min
D

{
max

i
{q0ii +Δqii + R̂D

i (Q)},max
j

{q0jj +Δqjj + ĈD
j (Q)}

}
,

σHmin(Q(t)) = max
H

{
min
i
{q0ii −Δqii − R̂H

i (Q)},min
j

{q0jj −Δqjj − ĈH
j (Q)}

}
,

σαmax(Q(t)) = min
α

{
max

i
{q0ii +Δqii + [R̂i(Q)]α[Ĉi(Q)]1−α}

}
,

σβmin(Q(t)) = max
β

{
min
i
{q0ii −Δqii − [R̂i(Q)]β [Ĉi(Q)]1−β}

}
,

σD,α
max(Q(t)) = min

D,α

{
max

i
{q0ii +Δqii + [R̂D

i (Q)]α[ĈD
i (Q)]1−α}

}
,

σH,β
min (Q(t)) = max

H,β

{
min
i
{q0ii −Δqii − [R̂H

i (Q)]β [ĈH
i (Q)]1−β}

}
.
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Fig. 2. Localization regions (gray region) of eigenvalues of perturbed matrices Q and Q(t).

Example 2. Consider two parametrically indefinite matrices Q with constant and variable pa-
rameters in the forms

Q =

[
−1 0
0 −1.5

]
+

[
r11 2r12
3r21 4r22

]
︸ ︷︷ ︸

ΔQ

,

Q(t) =

[
−1 0
0 −1.5

]
+

[
sin(t) 2 cos(1.5t)

3sgn(sin(2t)) 4sgn(cos(1.7t))

]
︸ ︷︷ ︸

ΔQ(t)

,

where rij , i, j = 1, 2 are pseudorandom numbers uniformly distributed over the interval (−1; 1).
Let us consider 100 realizations for each rij . The matrices ΔQ and ΔQ(t) have the same mij, so
the estimates of the localization region will be the same.

Figure 2 shows the localization region of the eigenvalues of Q and Q(t) using the results of
Lemmas 3–5 (gray regions), where small circles and triangles represent the eigenvalues of the
matrix Q with constant parameters, and continuous and dashed lines (inside the gray regions)
represent the eigenvalues of the matrix Q with non-stationary parameters. In three out of four
figures, the pairs of e-circles coincided due to the variation of di, hi, α, and β, so only two e-circles
are shown in three figures. The corresponding figures were obtained using:

• Lemma 3 (Fig. 2a);

• Lemma 4 with D = diag{1; 1.23} and H = diag{1; 0.81} (Fig. 2b);

• Lemma 5 with α = β = 0.5 and D = H = I (Fig. 2c);

• Lemma 5 with α = 0.5 and D = diag{1; 0.52} (Fig. 2d).
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The solid boundary of the e-circles corresponds to the figures composed along the rows of the
matrix, and the dotted boundary corresponds to the figures composed along the columns of the
matrix.

3. CONTROL SYSTEM STABILITY ANALYSIS

This section will consider several applications of the results of the previous section to the analysis
and design of control systems.

3.1. Synchronization of Network Systems

Consider a network system consisting of n interconnected agents of the form

ẋi =
n∑

j=1

qijxj + ui, i = 1, . . . , n, (13)

where xi ∈ R, ui ∈ R is the control signal, |qij| � mij. It is required to ensure that the condition
lim
t→∞

xi(t) = 0 is satisfied for all xi by choosing ui, i = 1, . . . , n.

Let us define the control laws

ui = −qxi, i = 1, . . . , n, (14)

where q > 0.

Use the following notations: x = col{x1, . . . , xn}, Q0 = −qI, ΔQ = (qij) and Q = Q0 +ΔQ.
Then (13) and (14) can be rewritten as

ẋ = Qx. (15)

As a result, checking the condition lim
t→∞

xi(t) = 0 is reduced to checking the stability of the matrix

Q0 +ΔQ, which can be ensured by an appropriate choice of q in (14).

Let q = −103 and qij be pseudorandom numbers uniformly distributed over the interval (−1; 1).

To analyze the stability of the matrix Q0 +ΔQ, we use:

• functions eig (calculating the eigenvalues of a matrix) and lyap (solving the Lyapunov equation)
in MatLab, assuming that qij are known;

• applications to solving the linear matrix inequalities CVX and Yalmip/SeDuMi, assuming qij
to be known;

• Lemma 1 (calculating σmax{Q}) and Lemma 2 (calculating σαmax{Q} with an exhaustive search
of α from 0 to 1 with a step of 0.1), assuming qij to be known;

• Corollary 3 (calculating σαmax{Q} with an exhaustive search of α from 0 to 1 with a step of
0.1), assuming qij to be unknown, but with known mij.

Figure 3 shows the graphs of the time spent on the operation to determine the stability of
Q0 +ΔQ depending on the dimension of the matrix (the number of agents in the network) and
using the corresponding method. Regardless of whether the corresponding method indicated that
the matrix Q is stable or unstable, the corresponding time was recorded to clarify this issue. The
calculations were performed in Matlab R2021b on a PC with an AMD Ryzen 5 PRO 4650U proces-
sor with Radeon Graphics 2.10 GHz and 8 GB of RAM. The results for CVX and Yalmip/SeDuMi,
as well as for Lemma 2 and Corollary 3 were almost identical, so their graphs in Fig. 3 matched
in pairs. We also note that when analyzing the proposed results, the maximum calculation time
was not reached due to the fact that Matlab R2021b did not generate a matrix with a dimension
greater than 25 000.
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Fig. 3. Dependence of time spent on determining the stability of the system (matrix Q) on the number of
agents in the network (n).

Conclusions:

• eig, lyap, CVX and Yalmip/SeDuMi algorithms provide a more accurate result in determining
stability (they provide a smaller error in the deviation of the obtained solution from the true
value) compared to the proposed estimates;

• the time spent on clarifying the stability issue when using CVX and Yalmip/SeDuMi increases
significantly (to a lesser extent when using eig and lyap) with an increase in the number of
agents in the network, while the proposed results are the least time-consuming in terms of
calculation.

The closed-loop system (15) contains a matrix with diagonal dominance. In [6–18], where
matrices with diagonal dominance were also used, it was noted that this is a rather narrow class
of systems under study. In the following sections, we will show that the proposed results can
be applied to systems with matrices without diagonal dominance. Diagonal dominance will be
presented to expressions obtained using the apparatus of Lyapunov functions.

3.2. Stability Analysis of Linear Non-Stationary Systems with Interval-Uncertain Parameters
and Matrices without Diagonal Dominance

In this section, we will consider a modification of the Demidovich theorem [19, Theorem 6.1;
23] (the term “Demidovich condition” is also used in the literature) on the study of the stability
of linear systems with known non-stationary parameters in the case of interval uncertainty and the
presence of external disturbances. Let the system be represented by the equation

ẋ(t) = A(t)x(t) + F (t)f(t), (16)

where t � 0, x ∈ R
n is the state vector, f ∈ R

l is an external signal such that sup{|f(t)|} � f̄ ,
F (t) ∈ R

n×l and A(t) = (aij(t)) ∈ R
n×n are such that sup{‖F (t)‖} � F̄ , A(t) = A0 +ΔA(t),

A0 = (a0ij), ΔA(t) = (Δaij(t)), Δaii � Δaii(t) � Δaii and |Δaij(t)| � mij for i �= j and for all t.
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Let us introduce the matrix Ā(t), where

Ā(t) = A(t) +AT(t) = Ā0 +ΔĀ(t),

Ā0 = (ā0ij) = (a0ij + a0ji),

ΔĀ(t) = (Δāij(t)) = (Δaij(t) + Δaji(t)),

2Δaii � Δāii(t) � 2Δaii,

|Δāij(t)| � mij +mji at i �= j.

(17)

Note that the system (16) contains a matrix A(t) without diagonal dominance. As will be shown
in the theorem below, diagonal dominance will be needed in the matrix Ā(t).

According to Demidovich theorem [19, Theorem 6.1; 23], the system (16) is asymptotically
stable for f(t) ≡ 0 and with a known matrix A(t) if the eigenvalues of the matrix A(t)+AT(t) take
negative values for all t. Next, we consider a generalization of this theorem to interval indefinite
matrices, taking into account the Corollary 3.

Theorem 1. Denote by σ any upper bound calculated using (12) for the eigenvalues of the ma-
trix Ā(t) in (17). If σ < 0, then the following bound holds:

|x(t)| � −2‖F̄‖f̄
σ

+ Ce0.5σt, (18)

where C = max
{
0, |x(0)| + 2‖F̄‖f̄

σ

}
.

Proof. We choose the Lyapunov function

V = xTx (19)

and find its derivative along the solutions (16) in the form

V̇ = xTĀ(t)x+ 2xTF (t)f.

Let us find the upper estimate

V̇ � σxTx+ 2|x|‖F (t)‖|f | � σV + 2
√
V ‖F̄‖f̄ . (20)

We solve the inequality (20) in the form

√
V � −2‖F̄‖f̄

σ
+

(√
V (0) +

2‖F̄‖f̄
σ

)
e0.5σt. (21)

Taking into account (19), we obtain

|x(t)| � −2‖F̄‖f̄
σ

+

(
|x(0)| + 2‖F̄‖f̄

σ

)
e0.5σt. (22)

The expression (22) yields the result (18).

Example 3. A system with constant parameters and a matrix without diagonal dominance.

Consider the system (16) with parameters A =

[
−1 3
−2.5 −2

]
, B = [0 0.05]T and u = sin(t). The

matrix A is not superstable [6–8] or diagonally dominant [4, 9–18] either in rows or in columns.
There are also no d1 > 0 and d2 > 0 for the conditions (2) to be satisfied, since the inequalities
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d1 − 3d2 > 0 and −2.5d1 + 2d2 > 0, composed for the matrix A, and the inequalities d1 − 2.5d2 > 0
and −3d1 + 2d2 > 0, composed for the matrix AT, have no solution.

Consider the matrix Ā = A+AT =

[
−2 0.5
0.5 −4

]
. The condition (2) will be satisfied for Ā, where

σ = σmax(Ā) = −1.5. The largest eigenvalue of the matrix A + AT is −1.88. If we use another
condition in (2) with d1 = 1 and d2 = 0.711, then the eigenvalue estimate can be improved to
σ = σDmax(Ā) = −1.6445.

Example 4. A system with non-stationary parameters with a matrix without diagonal dominance.
Consider the system (16) with parameters with A(t) = A0+ΔA(t), where A0 = A from the previous

example, ΔA(t) = 0.1

[
sin(t) cos(t)
sin(2t) sin(4t)

]
. The upper bounds (17) give negative values, therefore, the

system (16) is stable.

3.3. Control Law Design for Linear Systems with Matrices without Diagonal Dominance

Consider the system

ẋ(t) = A(t)x(t) +B(t)u(t) + F (t)f(t), (23)

where u ∈ R
m is the control signal, B(t) ∈ R

n×m, B(t) = b(t)B0, b � b(t) � b ∈ R, B0 is a known
matrix, the pair (A(t), B(t)) is controllable for all t. The remaining notations are as in (16). Assume
that the parameters ΔA(t), b(t), F (t) and f(t) are unknown.

Introduce the control law

u = Kx, (24)

where K ∈ R
m×n. Below we formulate theorems that allow us to calculate the matrix K that

ensures the stability of the closed-loop system

ẋ(t) = (A(t) +B(t)K)x(t) + F (t)f(t). (25)

Note that neither the matrix A(t) nor the matrix A(t)+B(t)K requires the diagonal dominance
property to be satisfied.

Theorem 2. Let the matrices A, B, and F in (23) be known and constant, and let for the given
α > 0 there exist the matrix Q = QT and the coefficient β > 0 such that the following conditions
are satisfied:

Ψii < 0,

Ψij � 0 for i �= j, i, j = 1, . . . , n,

σ(Q) > 0,

(26)

where

Ψ = (Ψij) := QAT +AQ+ Y TBT +BY + αQ+ βFTF, (27)

σ(Q) is one of the lower bounds for the eigenvalues of matrix Q, obtained using (2), as well as
K = Y Q−1 and P = Q−1. Then for the solutions of the system (25) the following estimate will be
valid

|x(t)| �
[

1

λmin(P )

(
f̄2

αβ
+Ke−αt

)]0.5
, (28)

where K = max
{
0, x(0)TPx(0)− f̄2

αβ

}
.
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Proof. We choose the Lyapunov function

V = xTPx, (29)

where P = Q−1, and find its time derivative along the solutions (25):

V̇ = xT[(A+BK)TP + P (A+BK)]x+ 2xTFf. (30)

Denoting z = col{x, f} and substituting (29) and (30) into the exponential stability condition
V̇ + αV + γfTf < 0, γ = 1/β, we obtain

zT
[
(A+BK)TP + P (A+BK) + αP PF

� −γI

]
z < 0. (31)

According to [24], the inequality (31) will be satisfied if the following condition is satisfied:[
(A+BK)TP + P (A+BK) + αP PF

� −γI

]
< 0. (32)

Using Schur lemma [24] and the fact that γ = 1/β, we rewrite (32) as

(A+BK)TP + P (A+BK) + αP + βPFTFP < 0. (33)

Multiplying (33) on the left and right by Q−1 and replacing Y = KQ, we get

Ψ := QAT +AQ+ Y TBT +BY + αQ+ βFTF < 0. (34)

According to Lemmas 1 and 2, the eigenvalues of the symmetric matrices Ψ and Q will be
negative and positive, respectively, if the inequalities (26) are satisfied. On the other hand, ac-
cording to [4] (Theorem 7.2.1), a Hermitian matrix is positive (negative) definite if and only if all
its eigenvalues are positive (negative). Therefore, the conditions Ψ < 0 and Q > 0 will be satisfied
if the inequalities (26) are satisfied. The estimate (28) follows from the solution of the inequality
V̇ + αV + γfTf < 0 taking into account (29) and the estimate λmin{P}|x|2 � xTPx.

Using the results of Theorem 2, we formulate the following theorem for systems with unknown
non-stationary parameters.

Theorem 3. Consider the system (23) with non-stationary parameters. Let there exist the matrix
Q = QT and the coefficient β > 0 such that the conditions hold

Φii < 0,

Φij � 0 for i �= j,

σ(Q) > 0,

(35)

at the vertices |Δaij(t)| � mij and b � b(t) � b, where

Φ = (Φij) := QAT
0 +A0Q+QΔAT(t) + ΔA(t)Q+ b(t)Y TBT

0 + b(t)B0Y + αQ+ βF̄ 2I,

σ(Ψ) is one of the upper bounds of the matrix Ψ, obtained using (12), and also K = Y Q−1 and
P = Q−1. Then for solutions of the system (25) the estimate (28) will be valid.
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Fig. 4. The transients of |x(t)| and u(t) for the proposed algorithm (solid curves) and the algorithm [25]
(dashed curves).

Proof. We will use the results (29)–(34) from the proof of Theorem 2 taking into account
non-stationary parameters. Since A(t) = A0 +ΔA(t), B(t) = b(t)B0 and ‖F (t)‖ � F̄ , then we
rewrite (34) as

Φ := QAT
0 +A0Q+QΔAT(t) + ΔA(t)Q+ b(t)Y TBT

0 + b(t)B0Y + αQ+ βF̄ 2I < 0.

If the conditions (35) are satisfied at the vertices |Δaij(t)| � mij and b � b(t) � b, then according
to [24] the condition (35) will be satisfied for any ΔA(t) and b(t) inside the polytope with vertices
|Δaij(t)| � mij and b � b(t) � b. The estimate (28) is obtained similarly to the proof of Theorem 2.

Example 5. Consider the system (23) with parameters A =

⎡⎢⎣0 1 0
0 0 1
1 2 3

⎤⎥⎦, B = col{0; 0; 1},

F = col{0.1; 0.5; 1} and f(t) = sin(t).

Obviously, the matrix A is without diagonal dominance, and the structure of the matrix B does
not allow the control law u = Kx with K ∈ R

1×3 to lead to the closed-loop system with a matrix
with diagonal dominance. Therefore, we use Theorem 2 to analyze the localization region of the
eigenvalues of the matrix Φ obtained as a result of applying the Lyapunov function method. Using
Theorem 2, we obtain K = col{−1.3671;−2.3619;−2.5724} and trace(P ) = 25.5858 for α = 1. Us-
ing [25], we obtain K = col{−2.8862;−4.9244;−3.2136} and trace(P ) = 40.631 for α = 1. In both
cases, the goal was trace(P ) → min for calculating K.

From Fig. 4 it is evident that in the steady state the value of |x(t)| of the proposed algorithm
is greater. However, the spike of |x(t)| and the amplitude of the control signal u(t) at the initial
moment of time are smaller, and the value of trace(P ) is also smaller.

4. CONCLUSION

The paper has described the application of the Gershgorin theorem and theorems derived from
it for estimating the localization domain of the eigenvalues of a matrix with constant and known
parameters. These results are generalized to estimate the localization domain for matrices with
parametric interval uncertainty. The concept of an e-circle is proposed, which allows obtaining
more accurate estimates of the localization domain than a direct application of the Gershgorin
theorem. The obtained results are applied to the control of network systems, where it is shown
that for large-dimensional problems, the proposed results are the least time-consuming in terms
of execution time compared to the eig and lyap procedures (commands in MatLab for finding the
eigenvalues of a matrix and solving the Lyapunov equation), as well as CVX and Yalmip/SeDuMi
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for solving linear matrix inequalities. A generalization of the Demidovich condition is proposed
for determining the stability of a non-stationary matrix. An approach has been developed for
calculating the matrix in a linear control law for control of linear systems where the property of
diagonal dominance for matrices in the closed-loop system is not fulfilled.
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Abstract—This paper is devoted to a linear autonomous differential-difference system of neutral
type with lumped delays. For such systems, we propose existence criteria for output-feedback
controllers based on incomplete measurements that ensure a given spectrum of the closed-loop
system or its exponential stabilization. In addition, we prove existence criteria for observers
forming asymptotic estimates with errors described by linear homogeneous systems with a
predetermined characteristic quasipolynomial or exponential stability. All the considerations
are constructive and contain a method for designing a corresponding controller or observer.
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1. INTRODUCTION

The delay effect is inherent in almost all control processes. Therefore, it should be taken into
account when building engineering, economic, and other models [1–4]. The general theory of
delayed systems, as well as their applications, was studied in rather many works (for example, see
the introduction in [3, 4]). In this paper, we investigate the stabilization problem for neutral delay
systems. Such systems describe the behavior of plants and processes whose rate of evolution depends
on both their previous states and their velocities, e.g., the motion of a pendulum with a viscous
filler [2], the plunge grinding model, and plants whose dynamics are described by systems with
distributed delays (in particular, telegraph equations). Let us provide other particular examples
of stabilization problems for linear systems of neutral type. When studying the oscillations of
the current collector of a moving locomotive far from the support (placed behind the current
collector), it is necessary to consider the effect of the reflected waves of the contact wire from the
strings supporting this wire and from the support placed in front of the moving current collector.
For such a mechanical system, one naturally encounters the stabilization problem [5]. Another
example is the stabilization problem of a system arising during the translational and rectilinear
motion of some mass under the action of a linear restoring force proportional to the coordinate
and some nonconservative force [6, p. 235]. Some time is needed to trigger the system’s sensitive
elements detecting the displacement, velocity, and acceleration of the mass, as well as the relay and
servomotor; therefore, one obtains a model in the form of a linear autonomous system of neutral
type [6, p. 235].

Research into the stabilization problem of delayed systems was initiated in [7, 8] and then picked
up by many scientists [9–16] (see also the bibliography therein). However, despite a rather large
flow of publications in this direction, the stabilization problem has not been fully studied to date.
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In general, the spectrum of linear systems with aftereffect is infinite, so the analysis and subse-
quent elimination of unstable eigenvalues from the spectrum requires some computational effort [15].
In this regard, a more universal approach to stabilize the system is to assign a finite spectrum, usu-
ally consisting of numbers with negative real parts [17–19]. A significant disadvantage of this
system stabilization approach is the solvability conditions of the corresponding (spectrum assign-
ment) problem, which are more stringent compared to the stabilization conditions.

Modal controllability is a more general problem than finite spectrum assignment: it is required
to tune the coefficients of the characteristic quasipolynomial of a system [20–22].

The Lyapunov–Krasovskii and Lyapunov–Razumikhin methods are effective for analyzing the
stability of delayed systems. They allow formulating the solvability conditions of the control prob-
lem in terms of matrix inequalities [23, Chap. 3–7]. This approach to controller analysis and design
provides constructive finite-dimensional conditions for its existence and can be extended to other
problems. For example, the control law designed in [24] limits the influence of disturbances and
measurement noise; the stability conditions of input data presented therein were described in terms
of matrix inequalities.

In contrast to the above method, based to a greater extent on the differential properties of the
control system, the approach proposed in this article is of a purely algebraic nature. A polynomial
detW (p, λ), where W (p, e−ph) is the characteristic matrix of a closed-loop system (in the case of a
dynamic controller), is treated as an element of an ideal I generated by a system of polynomials,
i.e., algebraic complements to the elements of the last row of the matrix W (p, λ). Therefore, the
class of possible characteristic quasipolynomials detW (p, e−ph) can be described by computing the
Gröbner basis of the ideal I. This circumstance reduces all controller/observer design computations
to operations in the ring of polynomials. This idea was utilized in [19, 25, 26] to construct a feedback
controller ensuring, after a finite time, zero values for all components of the original open-loop
system, i.e., a finite stabilization controller [27]. (In other words, such a controller completely
damps/calms the original open-loop system.) Such a problem is solved by constructing appropriate
feedback so that the closed-loop system becomes a finite-spectrum system pointwise degenerate in
the directions corresponding to the components of the solution vector of the original system [19, 25].
These ideas were extended to systems of neutral type in [26] and systematized in the monograph [4].
The next step in exploring the finite stabilization problem was the development of output-feedback
controllers based on available output observations. For delayed single-input single-output (SISO)
systems, such a problem was considered in [27]; for multi-input systems of neutral type, in [28, 29].

In this paper, utilizing the spectrum control methods for neutral systems [15] and the block
diagrams of feedback controllers with incomplete measurements [28, 29], we prove existence criteria
for output-feedback controllers based on available output observations that solve the problems of
modal controllability and stabilization. In addition, we propose methods for designing two types
of asymptotic observers and establish criteria for their existence.

2. NOTATION

Consider a linear autonomous differential-difference system of neutral type with commensurate
delays:

ẋ(t) = A0x(t) +
m∑
j=1

(
Ajx(t− jh) +Djẋ(t− jh)

)
+

m∑
j=0

bju(t− jh), t > 0, (1)

y(t) =
m∑
j=0

c′jx(t− jh), t � 0, (2)

x(t) = η(t), t ∈ [−mh, 0]. (3)
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Here, x∈R
n is the column vector of the solution of system (1) (n � 2); 0 < h is a constant de-

lay; A0, Aj ,Dj ∈R
n×n and bj ∈R

n, c′j ∈R
n; the dash symbol (′) indicates the transpose; u is the

control input (a scalar piecewise continuous function); y is the observed output (a scalar signal).
By assumption, the initial function η is continuous with a piecewise continuous derivative. In this
case, there exists a unique continuous solution with a piecewise continuous derivative. Throughout
this paper, the initial function η is supposed to be unknown.

This study pursues the following objective: based on available observations of the output of (2),
design output-feedback controllers that ensure a given characteristic quasipolynomial of the closed-
loop system or its exponential stabilization. The remainder of this paper is organized as follows.
First (see Section 3), two types of asymptotic observers are constructed using the controller design
methods from [15]. Then (Section 4), in order to obtain feedback controllers based on available
output observations, additional loops are incorporated into the controller structure from [15] in the
form of asymptotic observers according to the principle developed in [28, 29]. Finally, an illustrative
example is given in Section 5.

Let p, λ∈C, where C is the set of complex numbers. Also, we introduce the following notation:

A(p, λ) = A0 +
m∑
j=1

(Aj + pDj)λ
j ; (4)

W (p, e−ph) = pIn −A(p, e−ph) is the characteristic matrix (In ∈R
n×n means an identity matrix

of order n); w(p, e−ph) = |W (p, e−ph)| is the characteristic quasipolynomial of the homogeneous
(u = 0) system (1). From this point onwards, |W | means the determinant of an arbitrary square
matrix W.

Let φ∈N be an arbitrary number. A quasipolynomial d(p, e−ph), where

d(p, λ) =
φ∑

i=0

θi(λ)p
i

and θi(λ) are some polynomials with θφ(0) = 1, will be called a quasipolynomial of neutral type. If
θφ(λ) = 1, we have a quasipolynomial d(p, e−ph) of delayed type as a special case. The characteristic
quasipolynomial w(p, e−ph) of the homogeneous system (1) is in general a quasipolynomial of neutral
type and degp w(p, λ) = n.

Let Rr×m[λ] and Cr×m[λ] be the sets of matrices of dimensions r ×m whose elements are
polynomials of the variable λ with real and complex coefficients, respectively. (If r = m = 1, the
superscript will be omitted.) In addition, let λh and p

D
be the shift and differentiation operators,

respectively, i.e., pi
D
λjhf(t) = f (i)(t− jh) for a function f and integers i, j � 0.

To write the equations of the controllers and observers compactly, we introduce the set Qr×m(
Q1×1 = Q

)
, consisting of all mappings Q : f �→ Q[f ], where f(t), t∈R is an arbitrary continuous

(scalar or vector) function with a piecewise continuous derivative. (Square brackets are used to
distinguish mappings and functions.) Each mapping Q∈Qr×m is given by the following elements:
1) qi(λ)∈R

r×m[λ], i = 0, 1; 2) P = {αk±iβk, αk, βk ∈R, k = 1, n1}, representing the set of real and
complex conjugate numbers (i denotes the imaginary unit); 3) q̂ki(λ)∈C

r×m[λ], k = 1, n1, i = 1, n2
(n1 � 1, n2 � 0 are integers). Each mapping of this kind acts according to the rule

Q[f(t)] = q0(λh)f(t) + q1(λh)ḟ(t− h) +
n1∑
k=1

n2∑
i=0

h∫
0

q̂ki(λh)f(t− s)epks
si

i!
ds, t > 0, (5)
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where pk ∈P. The matrices q̂ki(λ) in (5) and the set P possess the following property: with the
Euler formula applied (eiϕ = cosϕ+ i sinϕ), the expression (5) becomes

Q[f(t)] = q0(λh)f(t) + q1(λh)ḟ(t− h) +
n̂1∑
j=0

h∫
0

rj(s)f(t− jh− s) ds, (6)

where n̂1 =maxk,i{degλ q̂ki(λ)}, rj(s) =
∑n1

k=1e
αks(cos(βks)νjk(s)+sin(βks)μjk(s)), (αk + iβk)∈P ,

and νjk(s), μjk(s)∈R
r×m[s] (degs νkj � n2, degs νkj � n2). Thus, all expressions in the relation (6)

are real numbers.

When the original system is closed by controllers containing the terms (5) (equivalently, the
terms (6)), distributed delays described by integral terms in (6) may appear in the closed-loop
system. In this case, the distributed delay terms (see the expression (5)) are associated with
the expressions q̂ki(e

−ph)
∫ h
0 e

−(p−pk)ssi/i! ds in the characteristic matrix of the closed-loop system.
Calculating the integrals of these expressions and then letting λ = e−ph yield the integer fractional
rational functions [19]

h∫
0

e−(p−pk)ssi/i!ds

∣∣∣∣∣
e−ph=λ

=
(−1)i+1

i!

di

dpi

(
λ− e−pkh

e−pkh(p − pk)

)
, i = 0, 1, . . . . (7)

The expression (5) (or (6)) is associated with the matrix

Q[ept]e−pt

∣∣∣∣∣
e−ph=λ

= Q(p, λ)

in the characteristic matrix of the closed-loop system, where

Q(p, λ) = q0(λ) + pλq1(λ) + q(p, λ) (8)

and q(p, λ) is a matrix of fractional rational functions of the form ω1(p,λ)
ω2(p)

, proper in the variable p

(ω1(p, λ) and ω2(p) are polynomials with complex coefficients such that degp ω1(p, λ) < degp ω2(p)).

We further suppose that if Ŵ (p, e−ph) is the characteristic matrix of a neutral system with a dis-

tributed delay given by (6), then the matrix Ŵ (p, λ) is obtained by first calculating the integrals (7)
and then letting e−ph = λ in the resulting expression.

For a given mapping Q (5), the transposed mapping Q′ is the one obtained from (5) by replacing
q0(λ), q1(λ), and q̂ki(λ) with q

′
0(λ), q

′
1(λ), and q̂

′
ki(λ), respectively.

3. ASYMPTOTIC ESTIMATION OF THE SOLUTION

In this section, we construct observers forming asymptotic estimates of the solution of the
original system (2) from the measurements (1) with errors vanishing at a given or exponential rate,
determined by the roots of the characteristic quasipolynomial. Further, these results will be needed
to design a stabilizing output-feedback controller based on available output observations.

We define the following linear system of neutral type:

ż1(t) = A(p
D
, λh)z1(t) + L1[z2(t)] + b(λh)u(t),

ż2(t) = β0(pD
)c′(λh)z1(t) + L2[z2(t)]− β0(pD

)y(t), t > 0,
(9)

where the matrix A(p, λ) is given by (4), L1 ∈Qn×1, L2 ∈Q1×1, β0(p)∈R0[p], and R0[p] ={
1, p+ α̂ : α̂∈R

}
is the set of polynomials that have the form p + α̂ or are equal to 1. For

system (9), we choose any initial condition

z(t) = ϕ(t), t∈ [−h0, 0], (10)
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where ϕ is a continuous function with a piecewise continuous derivative and h0 is the delay of
system (9).

We take the component z1 of the solution vector z = col[z1, z2] of system (9) as an estimate
of the solution x of system (1), (2) given the control input u. Obviously, the function ζ = z1 − x,
representing the error of the estimate z1 of the solution x, is a component of the solution of the
homogeneous system

ζ̇(t) = A(p
D
, λh)ζ(t) + L1[z2(t)],

ż2(t) = β0(pD
)c′(λh)ζ(t) + L2[z2(t)], t > 0.

(11)

Consider the characteristic matrixWz(p, λ) of system (11) (the homogeneous (u = 0) system (9)):

Wz(p, λ) =

[
pIn −A(p, λ) −L1(p, λ)

−β0(p)c′(λ) p− L2(p, λ)

]
, (12)

where Li(p, λ) = Li[e
pt]e−pt. Let us introduce the polynomial

g(p, λ) =
n+1∑
i=0

pigi(λ), gi(λ)∈R[λ], gn+1(0) = 1. (13)

Generally speaking, the quasipolynomial d(p, e−ph) is of neutral type.

Definition 1. System (1), (2) is said to have an observer (9) with a given characteristic polyno-
mial if, for any polynomial (13), there exist L1 ∈Qn×1, L2 ∈Q1×1, and β0(p)∈R0[λ] such that∣∣Wz(p, λ)

∣∣ = g(p, λ). (14)

Remark 1. The main goal of observer design is to obtain an estimate for the solution of an
original system. Therefore, when designing an observer with a given characteristic quasipolynomial,
the quasipolynomial (13) should be chosen so that system (11) be asymptotically or exponentially
stable. Regarding the computational complexity of solving system (11), the most convenient choice
is a polynomial (13) that does not depend on the variable λ and has roots with negative real parts.

Definition 2. System (1), (2) is said to have an exponentially stable observer (9) if there exist
L1 ∈Qn×1, L2 ∈Q1×1, and β0(p)∈R0[p] such that system (11) is exponentially stable.

Remark 2. A linear homogeneous autonomous system of neutral type is exponentially stable if
and only if [14] its characteristic quasipolynomial possesses exponential stability (i.e., the roots
pi of the characteristic equation satisfy the inequality Re pi < ε ∃ε < 0). In this case, the differ-
ence equation describing the jump behavior of the first derivatives of the solution is exponentially
stable [14]. We illustrate the above on an example of the system

ẋ(t) = Q[x(t)], (15)

where the mapping Q is given by (6). (All matrices in (6) have dimensions n×n.) Let W0(p, e
−ph)

be the characteristic matrix of system (15), W0(p, λ) = p
(
In − λq1(λ)

)
− q0(λ) − q(p, λ) (see (8)).

We introduce the sets

Δ0 =
{
p∈C :

∣∣∣W0(p, e
−ph)

∣∣∣ = 0
}
, Δ1 =

{
λ∈C :

∣∣∣In − λq1(λ)
∣∣∣ = 0

}
. (16)

For the exponential stability of system (15), it is necessary and sufficient that

Re p < −ε ∃ε > 0, p∈Δ0. (17)

In this case, the exponential stability of the difference equation implies

|λ| > 1, λ∈Δ1. (18)

Consider system (1). Denoting D(λ) =
∑m

j=1 λ
jDj, we formulate existence criteria for an ob-

server with a given characteristic quasipolynomial.
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Theorem 1. For system (1), (2) to have an observer (9) with a given characteristic quasipoly-
nomial, it is necessary and sufficient that

rank

[
W (p, e−ph)

c′(e−ph)

]
= n ∀p∈C, rank

[
In −D(λ)

c′(λ)

]
= n ∀λ∈C. (19)

The proof of this result is provided in the Appendix.

The following theorem represents an existence criterion for an exponentially stable observer.

Theorem 2. For system (1), (2) to have an exponentially stable observer (9), it is necessary and
sufficient that

rank

[
W (p, e−ph)

c′(e−ph)

]
= n ∀p∈C, Re p � ε1, ∃ε1 < 0,

rank

[
In −D(λ)

c′(λ)

]
= n ∀λ∈C, |λ| � 1.

(20)

See the proof in the Appendix.

4. MODAL CONTROLLABILITY AND EXPONENTIAL STABILIZATION

We define a dynamic output-feedback controller based on available output measurements:

u(t) = α0(pD)x1(t),

ẋ1(t) = Q11[x1(t)] +Q12[x2(t)],

ẋ2(t) = b(λh)α0(pD)x1(t) +A(pD , λh)x2(t) +Q23[x3(t)],

ẋ3(t) = α1(pD)c
′(λh)x2(t) +Q33[x3(t)]− α1(pD)y(t), t > 0,

(21)

where x1, x3 ∈R and x2 ∈R
n are auxiliary variables; Q11 ∈Q, Q12 ∈Q1×n, Q23 ∈Qn×1, Q33 ∈Q,

and αi(p)∈R0[p], i = 0, 1.

Let us close system (1), (2) with the controller (21). Obviously, system (1), (2), (21) is linear
inhomogeneous autonomous of neutral type with commensurable lumped and distributed delays,
and its inhomogeneous part depends on the output y(t). Following (2), we replace the function y(t)
in the inhomogeneous part with c′(λh)x(t) to obtain the homogeneous one. The characteristic
matrix W (p, λ) of this homogeneous system is given by

W (p, λ) =

⎡⎢⎢⎢⎢⎣
pIn −A(p, λ) −α0(p)b(λ) 0n×n 0n×1

01×n p−Q11(p, λ) −Q12(p, λ) 0

0n×n −α0(p)b(λ) pIn −A(p, λ) −Q23(p, λ)

α1(p)c
′(λ) 0 −α1(p)c

′(λ) p−Q33(p, λ)

⎤⎥⎥⎥⎥⎦ , (22)

where Qij(p, λ) = Qij [e
pt]e−pt and 0i×j ∈R

i×j (i, j > 1) is a zero matrix of appropriate dimensions.

Definition 3. System (1), (2) is said to be modally controllable (by the output) if, for any
polynomial

χ(p, λ) = χ1(p, λ)χ2(p, λ), (23)

where χk(p, λ) =
∑n+1

i=0 p
iχki(λ), χki∈R[λ], k = 1, 2, and χk n+1(0) = 1, there exists a controller (21)

such that the characteristic matrix of the closed-loop system (1), (2), (21) satisfies∣∣∣W (p, λ)
∣∣∣ = χ(p, λ). (24)

Generally speaking, the quasipolynomial χ(p, e−ph) is of neutral type.
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Definition 4. System (1), (2) is said to be exponentially stabilizable (by the output) if there
exists a controller (21) such that the closed-loop system (1), (2), (21) is exponentially stable.

The following theorems are criteria for the modal controllability and exponential stabilizability
of system (1), (2) in the class of controllers (21).

Theorem 3. System (1), (2) is modally controllable in the class of controllers (21) if and only if

rank
[
W (p, e−ph), b(e−ph)

]
= n ∀p∈C,

rank
[
In −D(λ), b(λ)

]
= n ∀λ∈C,

(25)

and conditions (19) hold.

See the proof in the Appendix.

Theorem 4. System (1), (2) is exponentially stabilizable in the class of controllers (21) if and
only if

rank
[
W (p, e−ph), b(e−ph)

]
= n ∀p∈C, Re p � ε0, ∃ε0 < 0,

rank
[
In −D(λ), b(λ)

]
= n ∀λ∈C, |λ| � 1,

(26)

and conditions (20) hold.

See the proof in the Appendix.

5. EXAMPLE

Let system (1), (2) be of the second order and be described by the following matrices and delay:

A(p, λ) =

⎡⎢⎢⎣−
1

2
pλ −3 + λ

−1

3
− 5

12
λ

⎤⎥⎥⎦ , b(λ) =

[
0

2λ− λ2

]
,

c(λ) = [0, −1], h = ln 2.

(27)

The original system with the matrices (27) has an infinite spectrum, and its characteristic
quasipolynomial (λ = e−ph) is given by

w(p, λ) =
1

2
p2(λ+ 2) +

5

24
pλ(λ+ 2)+

λ

3
− 1.

The quasipolynomial w(p, e−ph) has a positive root since w(0, 1) = −2
3 < 0; lim

p→+∞
w(p, e−ph) = +∞.

Thus, the unperturbed system is not exponentially stable.

Obviously, the first condition in (25) is violated for p = −1 and the second for λ = −1. This
means the validity of conditions (26). The first condition in (19) also holds but the second condition
fails for λ = −2; therefore, conditions (20) are true. Thus, the results of [28] (the design of an in-
complete measurements-based controller ensuring complete stabilization (simultaneously finite and
asymptotic stabilization and finite spectrum assignment) or those of [29] (only finite stabilization)
are inapplicable here. However, the conditions of Theorem 4 are satisfied, so we can construct
a controller based on incomplete measurements to exponentially stabilize the closed-loop system.
Looking ahead, note that the set of roots of the characteristic quasipolynomial of this closed-loop
system contains the points p = −1 and the roots of the equation e−ph = λ with λ = −2, at which
conditions (19), (25) are violated.
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Now we proceed to the controller design (21).

1. Following [15], we construct a controller (A.5). Necessary calculations [15] yield

u(t) = x1(t),

ẋ1(t) =

[
5

6
− 1

6
λh

]
ẋ1(t− h) +

[
−6 +

65

12
λh −

29

24
λ2h

]
x1(t)

+

h∫
0

(−12 + 6λh)x1(t− s)esds+

[−5

72
,
5

72

]
ẋ(t− h)

+

[−223

72
− 2λh,

25

3
+

185

288
λh

]
x(t) +

h∫
0

[
1,−9

2

]
esx(t− s)ds.

(28)

In this case, the matrix (A.6) has the form

Wx(p, λ) =

⎡⎢⎢⎢⎢⎣
p+

pλ

2
3− λ 0

1

3
p+

5

12
λ (2− λ)λ

ν1(p, λ) ν2(p, λ) ν3(p, λ)

⎤⎥⎥⎥⎥⎦ , (29)

where

ν1(p, λ) =
5pλ

72
− 1− 2λ

p− 1
+

223

72
+ 2λ, ν2(p, λ) = −5pλ

72
+

9(1− 2λ)

2(p − 1)
− 25

3
− 185λ

288
,

ν3(p, λ) = p− 5pλ

6
+
pλ2

6
+ 6

(1 − 2λ)(2 − λ)

p− 1
+ 6− 65λ

12
+

29λ2

24
.

Straightforward calculations finally lead to
∣∣Wx(p, λ)

∣∣ = (1− λ
3 )(1−

λ
2 )(1 +

λ
2 )(p+1)(p+2)(p+3).

2. We construct an exponentially stable observer (9). For this purpose, following the proof of
Theorem 4, we construct a controller (A.2) for system (A.1) that exponentially stabilizes the closed-
loop system (9), (A.2). Then, according to (A.3), we obtain an exponentially stable observer (9)
with

L1[z2] =

⎡⎢⎢⎣
−79

4
λh −

31

24
λ2h −

5

24
λ3h − 36

25

288
λ3h −

155

144
λ2h +

8

3
λh + 12

⎤⎥⎥⎦ z2(t),
L2[z2] =

−1

2
ż2(t− h) +

(
5

24
λ2h −

31

12
λh − 6

)
z2(t).

The characteristic matrix (12) has the form

Wz(p, λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p(2 + λ)

2
3− λ

79

4
λ+

31

24
λ2 +

5

24
λ3 + 36

1

3

5λ

12
+ p − 25

288
λ3 +

155

144
λ2 − 8

3
λ− 12

0 1 p+
1

2
pλ− 5

24
λ2 +

31

12
λ+ 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(30)

and
∣∣Wz(p, λ)

∣∣ = (
1 + 1

2λ
)2

(p+ 3)(p + 2)(p + 1).
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3. Using the parameters of the above controller and observer, we construct a controller (21):

u(t) = x1(t),

ẋ1(t) =

[
5

6
− 1

6
λh

]
ẋ1(t− h) +

[
−6 +

65

12
λh −

29

24
λ2h

]
x1(t)

+

h∫
0

(−12 + 6λh)x1(t− s)esds+

[−5

72
,
5

72

]
ẋ2(t− h)

+

[−223

72
− 2λh,

25

3
+

185

288
λh

]
x2(t) +

h∫
0

[
1,−9

2

]
esx(t− s)ds,

ẋ2(t) =

[
0

2λh − 2λ2h

]
x1(t) +

⎡⎣12 0

0 0

⎤⎦ ẋ2(t− h) +

⎡⎣ 0 −3 + λh

−1

3
− 5

12
λh

⎤⎦x2(t)

+

⎡⎢⎢⎣
−79

4
λh −

31

24
λ2h −

5

24
λ3h − 36

25

288
λ3h −

155

144
λ2h +

8

3
λh + 12

⎤⎥⎥⎦ x3(t),
ẋ3(t) =

−1

2
ẋ3(t− h) +

(
5

24
λ2h −

31

12
λh − 6

)
x3(t) +

(
[0, 1]x2(t)− y(t)

)
.

(31)

The matrix of the closed-loop system (22) has the form

W (p, λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p (2 + λ)

2
3− λ 0 0 0 0

1

3

5λ

12
+ p (2− λ)λ 0 0 0

0 0 ν3(p, λ) ν1(p, λ) ν2(p, λ) 0

0 0 0
p (2 + λ)

2
3− λ

79

4
λ+

31

24
λ2 +

5

24
λ3 + 36

0 0 (2− λ)λ
1

3

5λ

12
+ p − 25

288
λ3 +

155

144
λ2 − 8

3
λ− 12

0 −1 0 0 1 p+
1

2
pλ− 5

24
λ2 +

31

12
λ+ 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Straightforward calculations yield

∣∣W (p, λ)
∣∣ = (

1− 1

2
λ

)(
1− 1

3
λ

)(
1 +

1

2
λ

)3

(p+ 3)2(p+ 2)2(p+ 1)2.

6. CONCLUSIONS

This paper has been devoted to linear autonomous differential-difference systems of neutral type
with a scalar control input and an observable output. For such systems, we have derived modal
controllability and exponential stabilizability criteria in the class of output-feedback controllers
(function of the observed output). Modal controllability provides wider system design capabilities
compared to stabilizability. In particular, it is possible to specify the rate of convergence to zero
(vanishing) for the system solution by tuning the coefficients of the characteristic quasipolynomial.
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Alternatively, it is possible to ensure a finite spectrum, making the system simpler from a (subse-
quent) control standpoint. However, the requirements for the system parameters imposed by the
modal controllability criterion are more stringent than the conditions of exponential stabilizability.

Two types of asymptotic observers have been developed, namely, an observer with a given char-
acteristic quasipolynomial and an exponentially stable observer. The behavior of the estimation
errors of the observers is described by a linear homogeneous autonomous system of neutral type.
Moreover, for the first type of observer, it is possible to specify a desired characteristic quasipoly-
nomial of the system describing the error before its design (i.e., to set in advance the rate of
convergence of the observer’s estimate to the solution of the original system). In the case of the
second type of observer, the system describing the estimation error of the solution is exponentially
stable. Note that it is generally impossible to control the coefficients of the characteristic equa-
tion. However, the exponential stability of the system describing the estimation error ensures the
convergence of the estimate to the solution at an exponential rate.

The methods for constructing controllers and observers developed in this study involve stan-
dard operations with polynomials and polynomial matrices and are easily implemented in modern
computer algebra packages.
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APPENDIX

Proof of Theorem 1.

We introduce the neutral system

ẋ(t) = A′(p
D
, λh)x(t) + c′(λh)u(t), t > 0, (A.1)

and define the controller

u(t) = β1(pD)x1(t), ẋ1(t) = K1[x(t)] +K2[x1(t)], t > 0, (A.2)

where x1 ∈R is an auxiliary variable, K1 ∈Q1×n, K2 ∈Q, and β1(p)∈R0[p].

For any given quasipolynomial (13) there exists a controller (A.2) such that
∣∣W1(p, λ)

∣∣ = g(p, λ)
if and only if conditions (19) are valid [15]. Here, W1(p, e

−ph) is the characteristic matrix of the
closed-loop system (A.1), (A.2):

W1(p, λ) =

[
pIn −A′(p, λ) −β1(p)c′(λ)
−K1(p, λ) p−K2(p, λ)

]
,

with Ki(p, λ) = Ki[e
pt]e−pt

∣∣∣
e−ph

. Letting

β0(p) = β1(p), L1 = K′
1, L2 = K2 (A.3)

in equations (9) gives
(
W1(p, λ)

)′
=Wz(p, λ). Therefore,

∣∣Wz(p, λ)
∣∣ = g(p, λ), which implies the

existence of an observer (9) with the desired characteristic quasipolynomial.

Proof of Theorem 2. For system (A.1) there exists a controller (A.2) making the closed-loop
system exponentially stable if and only if conditions (20) are valid [15]. Therefore, repeating the

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



526 KHARTOVSKII et al.

proof of Theorem 1 with the necessary modifications, we show the existence of an exponentially
stable observer (9). The proof of this theorem is complete.

Proof of Theorem 3.

Necessity. Conditions (25) [15] are necessary and sufficient for modal controllability in the class
of feedback controllers based on measurements of the state vector x. Therefore, conditions (25) are
necessary for modal controllability in the class of feedback controllers based on measurements of
the observed output (2).

Let us prove the necessity of conditions (19). Suppose that system (1), (2) is modally controllable
in the class of controllers (21). By assumption, the controller (21) ensures equality (24) for some
given polynomial (23). Consider system (A.1) and define a controller of the form

u(t) = −α1(pD)x1(t),

ẋ1(t) = Q′
33[x1(t)] +Q′

23[x2(t)],

ẋ2(t) = α1(pD)c
′(λh)x1(t) +A′(pD , λh)x2(t) +Q′

12[x3(t)],

ẋ3(t) = α0(pD)b
′(λh)

(
x(t) + x2(t)

)
+Q′

11[x3(t)], t > 0.

(A.4)

Let Ŵ (p, e−ph) be the characteristic matrix of system (A.1),(A.4). Obviously, the matrix
(
W (p, λ)

)′
is obtained from the matrix Ŵ (p, λ) by permuting the rows and columns of blocks with numbers 2

and 4. Therefore, we write E24Ŵ (p, λ)E−1
24 =

(
W (p, λ)

)′
, where the matrix E24 swaps the rows

of suitable-size blocks with numbers 2 and 4 when multiplied by any matrix on the left. Hence,∣∣Ŵ (p, λ)
∣∣ = χ(p, λ), meaning that system (A.1) is modally controllable in the sense of [15] (i.e.,

by a feedback controller based on the state function x), and conditions (19) express a modal
controllability criterion for system (A.1). The necessity of conditions (19) and (25) is established.

Sufficiency. Consider a given polynomial (23). We prove the sufficiency part by providing a
design scheme for a controller (21) ensuring equality (24).

1. We define a state-feedback controller of the form

u(t) = α0(pD)x1(t), ẋ1(t) = Q12[x(t)] +Q11[x1(t)], t > 0. (A.5)

The notation in (A.5) is the same as in (21). Due to conditions (25), for any polynomial χ1(p, λ) (23)
there exists [9] a controller (A.5) such that the characteristic matrix Wx(p, e

−ph) of the closed-loop
system (1), (A.5),

Wx(p, λ) =

[
pIn −A(p, λ) −b(λ)α0(p)
−Q12(p, λ) p−Q11(p, λ)

]
, (A.6)

satisfies the equality ∣∣Wx(p, λ)
∣∣ = χ1(p, λ). (A.7)

Thus, the controller (A.5) has been constructed.

2. Under condition (19) (see Theorem 1), for any given polynomial χ2(p, λ) (23) there exists an
observer (9) with a given characteristic quasipolynomial such that the characteristic matrix (12)
satisfies the relation ∣∣Wz(p, λ)

∣∣ = χ2(p, λ). (A.8)

Thus, the observer (9) has been constructed.
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3. Using the parameters of the controller (A.5) and observer (9), we write the controller (21)
with the additional assignment

Q23 = L1, Q33 = L2. (A.9)

Let us show equality (24) for the characteristic matrix W (p, e−ph) of the closed-loop system (1),
(2), (21). For this purpose, we introduce the matrix

Γ =

⎡⎢⎢⎢⎢⎣
In 0n×1 0n×n 0n×1

01×n 1 01×n 0

−In 0n×1 In 0n×1

01×n 0 01×n 1

⎤⎥⎥⎥⎥⎦ . (A.10)

Direct verification yields

ΓW (p, λ)Γ−1 = W̃ (p, λ), (A.11)

W̃ (p, λ) =

⎡⎢⎢⎢⎢⎣
pIn −A(p, λ) −b(λ)α0(p) 0n×n 0n×1

−Q12(p, λ) p−Q11(p, λ) −Q12(p, λ) 01×1

0n×1 0 pIn −A(p, λ) −Q23(p, λ)

0n×1 0 −α1(p)c
′(λ) p−Q33(p, λ)

⎤⎥⎥⎥⎥⎦ .

From equalities (A.6), (A.7), (A.8), (A.11), and (12) it follows that W (p, λ) = ΓW (p, λ)Γ−1 =
χ(p, λ). The proof of Theorem 3 is complete.

Proof of Theorem 4. The idea of proving Theorem 4 is quite similar to that of proving Theorem 3,
so we will present only its brief scheme.

Necessity. 1. Suppose that system (1), (2) closed by the controller (21) is exponentially stable.
We form the sets Δ0 and Δ1 from Remark 2 (see (16)). If the first condition in (26) is violated,
then for any ε0 < 0 there exists p0 ∈C, Re p0 � ε0, such that rank

[
W (p0, e

−p0h), b(e−poh)
]
< n.

In this case, for any controller of the form (21), the number p0 remains in the spectrum of the
closed-loop system (1), (2), (21), i.e., p0 ∈Δ0. Therefore, condition (17) fails and, consequently,
system (1), (2), (21) cannot be exponentially stable.

If the second condition in (26) is violated, then there exists λ0 ∈C, |λ0| � 1, such that
rank

[
D(λ0)

]
< n. Obviously, for any controller of the form (21), the closed-loop system (1), (2), (21)

satisfies λ0 ∈Δ1. Hence, condition (18) is violated. The necessity of conditions (26) is established.

2. Now we prove the necessity of conditions (20). Consider system (A.1) closed by the con-
troller (A.4). Assuming sequentially that the first or second conditions in (20) are violated, similar
to (1), we show that the closed-loop system (A.1), (A.4) cannot be exponentially stable.

Sufficiency. We describe a design scheme for the controller (21) and then prove the exponential
stability of the closed-loop system.

1. Following [9], we construct the controller (A.5) exponentially stabilizing the closed-loop
system (1), (A.5). Conditions (26) ensure the possibility of constructing such a controller. In this
case, the characteristic matrix of the closed-loop system (1), (A.5) has the form (A.6).

2. We construct the exponentially stable observer (9). Conditions (20) ensure the possibility of
constructing such an observer. In this case, the characteristic matrix of the homogeneous system (9)
has the form (12).

3. Using the parameters of the controller (A.5) and observer (9), we write the controller (21)
with the matrices assigned by (A.9).
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Let us show the exponential stability of system (1), (21). For this purpose, we apply the following
nondegenerate transformation of the variables:

col[x, x1, x2, x3] = Γ−1col[x̃, x̃1, x̃2, x̃3],

with the matrix Γ given by (A.10). This transformation yields a new system with the characteristic
matrix W̃ (p, e−ph), where the matrix W̃ (p, λ) has the form (A.11). The resulting system will be
called the system Σ̃.

Due to the representation of the matrix W̃ (p, λ), the components x̃2 and x̃3 are determined by
a separate system (a subsystem of the system Σ̃) whose characteristic matrix coincides with (12).
Therefore, the system determining the components x̃2 and x̃3 is exponentially stable. In other
words, there exist positive constants γ1 and γ2 such that

‖x̃i(t)‖ � γ1e
−γ2t, t > 0, i = 2, 3. (A.12)

Consider the system corresponding to the first two rows of the blocks of the matrix W̃ (p, λ).
Since the components x̃2 and x̃3 are determined separately, they can be treated as an inhomogeneous
part in the system under consideration. Then the components x̃ and x̃1 satisfy the inhomogeneous
system for which the characteristic matrix of the corresponding homogeneous system coincides
with (A.6). Hence, the above homogeneous system is exponentially stable and, in view of (A.12),
there exist positive constants γ3 and γ4 such that

‖x̃(t)‖ � γ3e
−γ4t, ‖x̃i(t)‖ � γ3e

−γ4t, t > 0, i = 1, 3. (A.13)

These inequalities imply the exponential stability of the system Σ̃ and, consequently, of sys-
tem (1), (21). The proof of Theorem 4 is complete.
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Abstract—This paper considers a conservative system admitting a family of single-frequency
oscillations with a domain Ω. For the original system, an autonomous controlled (ε-corrected)
system with a small gain is introduced; a given oscillation from the domain Ω is stabilized
by constructing a cycle that attracts all trajectories from this domain together with its ε-
neighborhood. A universal adaptive control law, acting as a nonlinear force linear in velocity, is
designed to track the current value of potential energy during motion. The cycle is constructed
for any system oscillation. As a result, a new class of autonomous controlled systems is obtained
based on the conservative system, and the operating modes of this class are stabilized (in the
large) cycles with any desired energy. Examples are provided.

Keywords : conservative system, single-frequency oscillation, universal adaptive control, feed-
back, potential energy tracking, attracting cycle, stabilization
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1. INTRODUCTION

This paper is devoted to the single-frequency oscillations (periodic motions) of a conservative
system. They form families by a parameter, i.e., the constant energy h. The families are divided into
nondegenerate and degenerate. On a nondegenerate family, the period T (h) varies monotonically
with the constant h; an example is a family of pendulum oscillations. On a degenerate family,
oscillations are isochronous.

Nondegenerate oscillations can always be continued [1, 2] to a global family of oscillations. In a
conservative system, a global family is described by a reduced conservative system with one degree
of freedom. The same result holds for a family of degenerate oscillations of a conservative system,
but this issue is not considered separately in the paper. In any case, the problem of investigating
a conservative system with one degree of freedom arises first.

The idea of oscillation control by constructing a limit cycle goes back to L.S. Pontryagin [3], who
found necessary and sufficient conditions for isolating a limit cycle from a family of periodic solutions
of a Hamiltonian system by using non-Hamiltonian perturbations. B. van der Pol [4] investigated
the relaxation modes of a regerative receiver (in the absence of a perturbing force). In 1929,
A.A. Andronov discovered that the stable self-oscillations constructed by him and independently
by van der Pol are a physical embodiment of Poincaré curves. In 1881, A. Poincaré [5, Chap. VI]
introduced the concept of a limit cycle for a system in the plane. The theory of self-oscillations
was developed in Andronov’s school [6].
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Poincaré singled out the isolated case when periodic solutions are preserved qualitatively with
varying the parameter. In the non-isolated cases, a bifurcation occurs; here, note the main results
by N.N. Bogolyubov [7], I.G. Malkin [8], and V.K. Melnikov [9]. They were continued in many
directions, including, e.g., nonsmooth dynamics (see the review [10]).

In an autonomous ε-perturbed system, a bifurcation gives birth to a cycle. In this case, a
Jordan cell of zero characteristic exponents (CEs) splits: one zero CE is preserved whereas the
other CE becomes −εα. In the case α > 0, the Andronov–Witt theorem [11] on the stability of
a periodic motion of an autonomous system is valid. The concept of a cycle was also applied to
multidimensional systems [12]; the Andronov–Witt theorem remains valid for them as well. The
formula for computing the number α was given in [13].

In a linear periodic system, a CE is a root of the characteristic equation of the Lyapunov reduced
system with constant coefficients.

In an autonomous system, the solution is determined within a shift of the initial point along
the trajectory. Therefore, in the Andronov–Witt theorem, when passing to the neighborhood
of a periodic motion for an n-order system, the problem of asymptotic stability is posed in the
Rumyantsev sense [14] with respect to n− 1 variables (the deviations from this motion). The
solution is obtained for CEs with negative real parts; the single number −εα is calculated for a
system in the plane. In the case of the Andronov–Witt theorem, this property is called the orbital
asymptotic stability of a periodic motion or attraction [15] with a specified attraction domain of
trajectories: in the small (locally) or in the large (globally).

A cycle is an isolated periodic solution of an autonomous system [12]. An attracting cycle is an
orbitally asymptotically stable single-frequency oscillation. In a controlled autonomous system, an
oscillation is stabilized by constructing an attracting cycle.

According to [13], in the neighborhood of a cycle, the van der Pol dissipation is universal
in the sense of independence from the considered system with oscillations. For a mathematical
pendulum, the result established in [13] implies that any oscillation is stabilized (in the small) by
using an adaptive stabilization scheme [2]. The scheme involves a control law with a parameter
chosen depending on the parameter value for the oscillation to be stabilized: the control law has
adaptivity. The scheme can be applied independently or as part of a more general adaptive control
system.

A cycle and an attracting cycle are achieved using a feedback loop, in which a coordinate-tracking
van der Pol-type controller receives trajectory information to form dissipation at the current tra-
jectory point without delay. Thus, the stabilization problem is solved in the neighborhood of the
oscillation under consideration. For global stabilization, the feedback loop is based on potential
energy tracking and is described in this paper.

Other studies on the stabilization of a desired oscillation mode differ in the use of explicit time-
varying control laws. Let us mention some of these studies. A review on the example of an inverted
pendulum was provided in [16]. Swinging control was proposed in [17, 18]. The orbital stabilization
problem of periodic solutions of low-drive nonlinear systems was solved in [19]; the nonlinear
feedback control law designed therein is time-varying. Stabilization of a desired mechanical energy
by impulsive control was described in [20]; a robust stabilizing control law for oscillations was found
by the implicit Lyapunov method in [21]; electrodynamic control-based stabilization was carried
out in [22].

In this paper, we construct a ε-corrected conservative system possessing an attracting cy-
cle. Its attraction domain includes the oscillation domain Ω of the conservative system and the
ε-neighborhood of Ω. In addition, we solve the global stabilization problem. Note that for a reduced
conservative system with one degree of freedom, the local problem was solved in [2].
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2. A CONSERVATIVE SYSTEM WITH ONE DEGREE OF FREEDOM. CONTROL DESIGN

Consider a smooth conservative system with one degree of freedom admitting a family Σ of single-
frequency oscillations in a parameter h, where h is the constant energy value. According to [1], such
a family can always be continued to a global family, so a global family Σ will be analyzed below.
It occupies an oscillation domain Ω. The period on the family can be increasing (a mathematical
pendulum), constant (a harmonic oscillator), or decreasing (the equation ẍ + x3 = 0). Under a
ε-small force (a control law with a small gain ε), we obtain an autonomous corrected (controlled)
conservative system of the form

ẍ+ f(x) = εu(x, ẋ). (1)

For ε = 0, equation (1) admits the energy integral

ẋ2 = 2(h −Π(x)), Π =

∫
f(x)dx. (2)

In the domain Ω, 0 < Π(x) � h. On the family Σ, the coordinate is described by the formula
x = ϕ(h, t) and the period T = T (h) is a function of the constant energy h.

Let us choose a smooth function u without an explicit time dependence (autonomous control).
In the stabilization problem, the control law must ensure local attraction to a cycle, so the function
u(x, ẋ) will be of the form u = a(x, ẋ)ẋ [13]. The function a = 1−Kx2 itself was found in [13]; it
ensures the existence of a cycle. By choosing a constant K = K(h∗) in this function, one achieves
the orbital asymptotic stability of the cycle born from the oscillation of a conservative system with
the energy value h∗ [13]. The local result becomes global for an isochronous family of oscillations.
This fact is demonstrated in the van der Pol equation. However, for a nondegenerate family of
oscillations, the local result does not extend to the entire domain Ω.

When solving the local problem [13], the idea is to consider the dependence of K(h) on the
energy value h for a nondegenerate family of oscillations. Thereby, one constructs a cycle in the
corrected system close to an oscillation of a conservative system with the desired energy h = h∗.
For this purpose, K = K(h∗) is chosen.

In this paper, we apply a control law tracking in a feedback loop the current potential energy
during motion. For the controlled conservative system

ẍ+ f(x) = ε[1−K(h∗)Π(x)]ẋ, (3)

we study the existence of a cycle close to the oscillation of the conservative system with an energy
value h = h∗ > 0. The control law is designed below as well.

Consider the amplitude (bifurcation) equation

I(h) ≡
T ∗∫
0

[1−K(h∗)Π(x)]ẋ2dt = 0, (4)

in which the potential Π(x) and kinetic T̃ = ẋ2/2 energies are calculated on the solution x = ϕ(h, t).
Equality (4) expresses necessary and sufficient conditions for the existence of a T ∗-periodic solution
in the first ε-approximation. Equality (4) takes into account the conjugate solution ψ = −ϕ̇ of the
conservative system. As it turns out, the condition dI(h∗)/dh �= 0 is sufficient for the existence
of a periodic solution of the perturbed equation (3); for details, see [7–9]. For the autonomous
system (3), this general result means the birth of a cycle. When the derivative is negative, the
cycle is stable: the formula for the CE was given in [13].
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The identity
T∫
0

[1−K(h)Π(ϕ(h, t))]ϕ̇(h, t)2dt ≡ 0 (5)

expresses existence conditions for a periodic solution in the first ε-approximation for all values of h.
It yields the function

K(h) =

T∫
0
(h−Π(ϕ(h, t)))dt

T∫
0
Π(ϕ(h, t))(h −Π(ϕ(h, t)))dt

. (6)

In (6), the denominator is nonzero in the oscillation domain Ω. The function K(h) is defined
uniquely through the potential energy Π, which varies with time t along the trajectory. Only one
trajectory and one value of K(h) corresponds to each h.

On the other hand, formula (5) with the upper limit of integration T = T ∗ and the number
K(h) = K(h∗) leads to the amplitude equation (4) for finding the value of h corresponding to the
cycle. The explicit form of the function K(h) will be presented in Section 3.

Equation (3) defines a mapping of the phase plane onto itself: t : 0 → T . In this case, the curve
Γ(h, 0) = {x(h, 0), ẋ(0)} is mapped into the curve Γ(h, T ) = {x(h, T ), ẋ(T )}. The existence of a
unique root h = h∗ of equation (4) means the coincidence of the points Γ(h∗, 0) and Γ(h∗, T ). This
fact is observed for the curves constructed using even the first ε-approximation: the necessary and
sufficient conditions in the first approximation become sufficient for the existence of a fixed point of
the mapping in the first ε-approximation. For the unique root, the fixed point of the mapping will
be isolated, and it corresponds to an isolated periodic solution of period T. In view of T (h∗) = T ∗,
we obtain a cycle of period T ∗. The condition dI(h∗)/dh < 0 is valid for a contracting mapping:
the cycle becomes orbitally asymptotically stable.

3. ATTRACTION TO THE CYCLE IN THE SMALL

The integral (4) is taken on the interval t ∈ [0, T ∗]. Here, the function Π(x) depends only on x and
is calculated via the solution x = ϕ(h, t). The change of variable τ = (T (h)/T ∗)t in the integral (4)
makes the coordinate x directly dependent only on τ ; the function x(h, τ) becomes T ∗-periodic for
all values of the parameter h. For an oscillation with zero initial velocity, we obtain

x(h, τ) = x(h, 0)e(τ), e(τ) = e(τ + T ∗). (7)

The function e(τ) varies on the interval [0, 1]. The same is true for the function Π(x(h, τ)). For τ = 0,
we have Π(x(h, 0)) = h. Therefore, due to the expression (7), the equality Π(x(h, τ)) = hz(τ) holds,
where a particular function z(τ) is calculated for a given potential energy. See the Appendix for a
more general analysis of the application of the variable τ ; Theorem 4 provided therein essentially
supplements the main results, being of independent interest.

Considering the new expression for the potential energy Π, we transform the amplitude equa-
tion (4) as follows:

I(h) = 0, I(h) ≡ h

T ∗∫
0

(1−K(h∗)hz)(1 − z)dτ. (8)

The function I(h) can be represented as

I(h) = h(α − βh), α =

T ∗∫
0

(1− z)dτ, β = −K(h∗)

T ∗∫
0

z(1 − z)dτ. (9)

Clearly, equation (8) admits the unique nonzero root h∗ = α/β.
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Identity (5) takes the form

h

T ∗∫
0

(1−K(h)hz)(1 − z)dτ ≡ 0.

Therefore, at the point h = h∗,

d

dh

⎛⎝h T ∗∫
0

(1−K(h∗)hz)(1 − z)dτ

⎞⎠
h=h∗

− dK(h∗)

dh
(h∗)2

T ∗∫
0

z(1− z)dτ ≡ 0.

The derivative at the point corresponding to the cycle is calculated by the formula

dI(h∗)

dh
=
dK(h∗)

dh
(h∗)2

T ∗∫
0

z(1− z)dτ. (10)

The function (6) is given by

K(h) =

T ∗∫
0
(1− z(τ))dτ

h
T ∗∫
0
z(τ)(1 − z(τ))dτ

=
b

h
, b = const > 0. (11)

The integrals in (11) are independent of the energy constant h and take positive values as sums of
the integrals on quarters of the period. Therefore, K(h) = b/h, where b > 0 is a constant.

Formula (11) is valid for any family of oscillations: that with an increasing (decreasing) period
on the family or an isochronous family. The dependence (11) is an important characteristic of a
family of oscillations.

We have the following result regarding the local stabilizability of a cycle.

Theorem 1. The ε-corrected conservative system (3) always has an orbitally asymptotically stable
(in the small) cycle close to the oscillation of the conservative system with the energy value h = h∗.
This cycle attracts trajectories from its O(ε)-neighborhood.

Proof. According to the amplitude equation (8), the corrected conservative system (3) has a
cycle close to the oscillation of the conservative system with the energy value h∗ = α/β. At this
point, the sign of the derivative (10) coincides with that of the number

dK(h∗)

dh
= − b

(h∗)2
< 0.

Therefore, by formula (10), the derivative is dI(h∗)/dh < 0, and the mapping t : 0 → T ∗ is con-
tracting: all trajectories from the neighborhood of the cycle are attracted to the cycle.

Remark 1. The derivative dK(h∗)/dh is commonly used for proving local results on a cycle.
However, the inequality dI(h∗)/dh = −h∗β < 0 can be derived directly from the expression (9).

4. ATTRACTION TO THE CYCLE IN THE LARGE

For system (1) we define the total mechanical energy

E ≡ ẋ2

2
+ Π(x). (12)
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This function takes a constant value h on the solutions of the conservative system. For the corrected
conservative system,

dE

dt
= ε[1−K(h∗)Π(x)]ẋ2, (13)

where

ẋ2 = 2(E −Π(x)).

For ε = 0 we have E = h(const) > 0.

The increment ΔE of the energy (12) on the period T (h) is calculated for an oscillation with
the energy value h. Therefore, for ε > 0,

Π(x) = Π(ϕ) + hερ(ε, x)), E −Π(x) = h−Π(ϕ) + hεσ(ε, x), (14)

where functions ρ and σ are of order one. Integration is performed over the variable τ on the
interval [0, T ∗]. As a result,

ΔE(ε, h) = ε
2T (h)

T ∗ [I(h) + εhF (ε, h)], (15)

where εhF (ε, h) is calculated by substituting the expressions (14) into equality (13) and matches the
terms hερ and hεσ. This formula remains valid in the entire oscillation domain Ω of the conservative
system.

The function E(ε, h∗, τ) calculated on the cycle is T ∗-periodic, so ΔE(ε, h∗) = 0. For the cycle,
we have the amplitude equation I(h∗) = 0. As a consequence, the equality F (ε, h∗) = 0 is true for
the cycle.

Lemma 1. There exists a h∗-independent number ε0 > 0 such that, for 0 < ε < ε0, the equation

I(h) + εhF (ε, h) = 0 (16)

has a unique root.

Proof. With the representation (9), equation (16) is simplified:

V ≡ G(h) + εF (ε, h) = 0, G ≡ α− βh.

The equation G(h) = 0 has the root h∗ = α/β corresponding to a cycle. According to Theorem 1,
the cycle is locally attracting. Hence, for h �= h∗, the function G(h) takes values of the same sign
under small ε. The function F (ε, h) vanishes at the point h = h∗. Therefore, the function V can be
transformed to

V = (α− βh)(1 + εW (ε, h)). (17)

Under small ε, the sign of V coincides with that of G. However, as ε increases, the second factor
in (17) may vanish. The corresponding value of ε(h) depends on h. For the cycle with h = h∗,
we choose the smallest value of the number ε(h(h∗)) and denote by ε0 the lower bound of the
set {ε(h∗)}. Then for 0 < ε < ε0, equation (16) has a unique root independent of the particular
value of h∗. In this case, according to (9) and (17), the existence of a root in equation (16) is
determined by the term G(h), which has a unique root.

The proof of Lemma 1 is complete.

Next, the corrected system (3) is investigated under 0 < ε < ε0. The oscillation domain Ω of the
conservative system is considered; in the conservative system under analysis, there may be more
than one oscillation domain.
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Theorem 2. There exists a number ε0 > 0 such that the corrected conservative system (3) with
0 < ε < ε0 always has a unique cycle attracting all trajectories of the oscillation domain Ω of the
conservative system.

Proof. In the oscillation domain Ω, the corrected conservative system (3) admits (Lemma 1) a
unique cycle: the corresponding value of the conservative system energy is h = h∗. On the cycle,
ΔE(ε, h∗) = 0. Beyond the cycle, the sign of the function ΔE(ε, h) coincides with that of the linear
function G(h), G(h∗) = 0. The rate of change of the function is dG(h)/dh = −β < 0. Hence, the
function G(h) → 0, and the trajectories of the corrected system (3) tend to the cycle. This happens
with any trajectory from the oscillation domain Ω of the conservative system.

The proof of Theorem 2 is complete.

5. THE MULTIDIMENSIONAL SYSTEM

By the global family theorem [1, Theorem 1], the variables are separated in a multidimensional
system. The variable x describes an oscillation family Σ on the manifold Ω invariant with respect to
the phase flow of the conservative system. Outside the manifold Ω, the dynamics of the conservative
system are given by the vector y of dimension n− 1. In the domain Ω, y ≡ 0. Therefore, outside Ω,
the motion of the conservative system in the neighborhood of the trivial solution y = 0 is studied.

According to Poincaré, the characteristic equation of a conservative system is reciprocal: the
roots of the equation are divided into pairs containing numbers with opposite signs. Therefore, in
the real-root case, under the action of ε-small control, the outgoing solutions will remain outgoing.
Hence, the absence of roots with real parts is a necessary condition for attracting solutions to Ω.

Together with the separation of the integral manifold Ω, the ε-corrected system (3) with the vari-
able x is constructed. The principal coordinates are applied for the variable y in the neighborhood
of the point y = 0. Next, we consider a controlled conservative system of the form

ÿi + kiyi + Yi(y) = ε[(1 −K(h∗)Π(x)]ẏi,

ki = const, ki � 0, i = 1, . . . , n − 1.
(18)

According to (18), the energy Ey of the conservative system in the variable y varies by the law

dEy

dt
= ε[1−K(h∗)Π(x)]ẏ2, ẏ2 =

n−1∑
i=1

ẏ2i , (19)

similar to the law (13) for the variable x. In addition, Ey = hy = const for ε = 0.

The energy variation law of the entire conservative system

d(Ex + Ey)

dt
= ε[1−K(h∗)Π(x)](ẋ2 + ẏ2),

written in the variables x and y, is associated with the amplitude equation

Ĩ(h̃) ≡ −
T ∗∫
0

[1−K(h∗)Π(x)](ẋ2 + ẏ2)dt = 0, h̃ = h+ hy. (20)

The function Ĩ(h̃) admits a simple root h̃ = h∗, h∗y = 0, which follows from the existence of a simple
root in equation (4). The simple root of equation (20) is associated with a cycle of the controlled
system (21) (see [8, Chap. VI, §8, p. 413, §9, p. 417]). The function Ĩ(h̃) is continuous, and the
cycle of the entire system coincides with the cycle on Ω.
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The laws (13) and (19) imply the equality

ẏ2dE = ẋ2dEy;

hence, the energy in the system with the variable y changes on the period (increases and decreases)
in the same way as in that with the variable x. In addition, by Theorem 2, the one-period increment
ΔE(ε, h) in the variable x tends to zero whereas the trajectory on the manifold Ω to a unique cycle.
Then the one-period increment ΔEy(ε, h) in the variable y tends to zero whereas the trajectory to
the unique equilibrium y = 0 corresponding to the cycle on Ω.

Thus, all trajectories of the domain Ω and its ε-neighborhood are attracted to the cycle. This
result is true regardless of the coordinates used to define the conservative system.

Next, consider the controlled system

d

dt

∂L

∂q̇s
− ∂L

∂qs
= ε[1−K(h∗)Π(x)]

∂T̃

∂q̇s
, s = 1, . . . , n, (21)

defined by the Lagrange equations of the second kind. Here, T̃ and Π are the kinetic and potential
energies, respectively. By assumption, for ε = 0 system (21) admits a family Σ of single-frequency
oscillations occupying the two-dimensional domain Ω. On Ω, the system is described by the vari-
able x; control is intended to track the potential energy on the solution. Let us choose 0 < ε < ε0,
where ε0 is a finite number for the oscillation family Ω; h∗ is the energy value corresponding to a
cycle in Ω; on Ω, the energy value h = 0 correspond to the equilibrium.

In a system described by Lagrange equations of the second kind, the global family of periodic
motions is constructed by a continuation of its local Lyapunov family [1]. In turn, the latter is born
from an equilibrium. According to the Lyapunov center theorem [23], a family of nondegenerate
local nonlinear periodic solutions exists in system (18) if, in addition to pure imaginary roots,
this system has non-resonant frequencies

√
kj �= p

√
ks, p ∈ N. Moreover, by the Lyapunov center

theorem [23], the Lyapunov family always exists for the largest frequency. In the analysis of
system (18), the above conditions have not been imposed. They arise in the Lagrangian system.
Keeping this aspect in mind, we proceed to the controlled system (21).

When the principal coordinates for the system in y are not separated, the right-hand sides of
system (18) will contain linear combinations of the velocities ẏi; they are partial derivatives of the
kinetic energy T̃ of the system in ẏs. The reconstruction of system (21) is completed by returning
to the initial stage of building the reduced system with one degree of freedom [1]. At this stage,
the velocity ẏi with a constant factor is added to the linear combination of the velocities ẏi.

When formulating Theorem 3, we accept the hypotheses of the Lyapunov theorem about the
center adjacent to the oscillation domain Ω.

Theorem 3 (on the corrected conservative system). Let a conservative system described by the
Lagrange equation of the second kind admit an oscillation family with a domain Ω. Then there
exists a number ε0 > 0 such that the corrected system (21) with 0 < ε < ε0 always has a unique
cycle in Ω that is ε-close to the oscillation of the conservative system with energy h = h∗. The cycle
attracts trajectories from the oscillation domain Ω and also those ε-close to Ω. On the solutions of
the corrected system, the energy variation law E = T̃ +Π of the conservative system is given by

dE

dt
= ε[1−K(h∗)Π(x)]T̃ .

Remark 2. The theorem on a corrected conservative system is formulated for a Lagrangian
system. The application of Theorem 3 to a conservative system written in other variables is
demonstrated in the examples below.
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6. SOME EXAMPLES

First, we analyze the rate of approaching the cycle in energy terms. On the trajectories of the
corrected conservative system (3), the energy variation law is given by (13). The one-period energy
increment is calculated by formula (15). For a given ε < ε0, it equals 2T (h)hV. On the other hand,
for an energy value h, the cycle is approached with a rate V almost linear in h. For h > h∗, the
attraction to the cycle occurs with increasing rate V, which is negative on the above interval. For
trajectories with an initial positive energy, the rate V is positive all the time while approaching
the cycle. At the point h∗ = α/β, the rate V changes its sign from plus to minus. Let us provide
several examples.

Example 1. The van der Pol equation in the adaptive stabilization scheme is described by

ẍ+ x = ε(1−K(h∗)x2)ẋ, K(h∗) = const > 0. (22)

In the van der Pol equation, K(h∗) = 1.

For ε = 0, we have a harmonic oscillator with the potential energy Π = x2/2. The generating
oscillation is given by x = A cos t, whereA denotes an amplitude. The energy is h = A2/2; therefore,
τ = 2t, Π = hz(τ), and z = 1 + cos 2t. Calculations by formula (11) yield the number b = 2. The
amplitude for the cycle is A∗ = 2/

√
K(h∗).

Equation (22) satisfies all the hypotheses of Theorem 2. Therefore, the corrected linear oscillator
has a globally attracting cycle that passes, depending on K(h∗), through any given point of the
phase plane. The oscillation domain Ω in equation (22) coincides with the entire phase plane,
excluding the punctured zero. Far from the cycle, as well as near zero, the rate of approaching the
cycle is proportional to εh2. Near the cycle with energy h∗, this rate equals εh|Δh|, |Δh| = h− h∗.

In equation (22) with K = 1, the cycle was constructed by van der Pol [4] and, independently
of him, by Andronov [11].

Note that the doubled potential energy is applied in the van der Pol oscillator. In the local
ε-theory, the number ε∗ is not estimated; the cycle remains attracting when increasing ε; the
farther ε is from zero, the lesser the oscillator’s behavior will resemble harmonic oscillations.

Example 2. Consider the corrected mathematical pendulum

ẍ+ sinx = ε(1− 2K(h∗) sin2(x/2))ẋ.

In a nonlinear system, the calculation of the function z(τ) is complicated due to the unknown
function describing the oscillations. For a mathematical pendulum, Π = 2 sin2(x/2). The depen-
dence (11) was numerically obtained in [24].

The peculiarity of the mathematical pendulum is that the oscillation domain has boundedness
from above in h. Near the point h = 0 (small oscillations), the rate of approaching the cycle is
proportional to εh2.

The mathematical pendulum is investigated in the relative motion problem of a satellite in the
plane of a circular orbit [25]. An adaptive scheme for stabilizing the satellite oscillation (in the
small), given by

ẍ+ |μ| sinx = εσ(1 − 2K(h∗)x2)ẋ, (23)

was proposed in [2]; also, the local attraction problem was solved for any trajectories from the
neighborhood of the stabilized oscillation.

Let us introduce the following notation for the satellite [25]: μ is the inertial parameter (|μ| � 3);
α is the angle between the radius vector of the center of mass and the main central axis of inertia
of the satellite in the orbital plane; v is the true anomaly chosen as the independent variable. In
equation (23), x = 2α and μ > 0 or x = 2α+ π and μ < 0, and σ = 1.
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By replacing the term 2K(h∗)x2 in equation (23) with 2K(h∗)|μ| sin2(x/2), we achieve a cycle
attracting all trajectories from the oscillation domain (see Theorem 2). Thus, the global attraction
of trajectories is ensured.

For small μ (a “flattened” satellite), it may be interesting to use the stabilized long-periodic
oscillation of the satellite (in the large) near the equilibrium instead of the latter.

Example 3. The two-body problem

d2x

dt2
= − γx

x2 + y2
,

d2y

dt2
= − γy

x2 + y2
, γ > 0,

has the area integral

x
dy

dt
− y

dx

dt
= c, c = const. (24)

On the integral manifold (24), the dynamics are described by the conservative system

d2r

dt2
=
c2

r3
− γ

r2
, r2 = x2 + y2,

which possesses a family of elliptic orbits for a fixed value c = c∗. (The constant solution of this
equation is associated with circular orbits.)

According to Theorem 2, in the corrected system

d2r

dt2
− c2∗
r3

+
γ

r2
= ε((1 −K(h∗)Π(r))

dr

dt
, Π =

2c2∗
r2

− γ

r
,

any orbit of the two-body problem close to the elliptic orbit with energy h∗ is stabilized (in the
large). The attraction of other orbits to the plane c∗ is ensured by the equation Δ̇c = −Δc,
Δc = c− c∗.

Example 4. The dynamics of a heavy solid with a fixed point are described by the classical
Euler–Poisson equations

Aṗ = (B − C)qr + P (z0γ2 − y0γ3), γ̇1 = γ2r − γ3q,

Bq̇ = (C −A)rp+ P (x0γ3 − z0γ1), γ̇2 = γ3p− γ1r,

Cṙ = (A−B)pq + P (y0γ1 − x0γ2), γ̇3 = γ1q − γ2p,

(25)

written in quasi-coordinates: A,B, and C are the principal moments of inertia of the body; P is
the body weight; x0, y0, and z0 are the coordinates of the center of gravity; Ω = (p, q, r) is the
angular velocity; finally, Γ = (γ1, γ2, γ3) is the unit vertical vector directed upward.

For y0 = 0, system (25) admits the integral manifold

p = 0, r = 0, γ2 = 0. (26)

The Mlodzeevskii motions [26] realized on this manifold are described by

Bq̇ = P (x0γ3 − z0γ1), γ̇1 = γ2r − γ3q, γ̇3 = γ1q − γ2p. (27)

Using the geometric relation γ21 + γ23 = 1 and the changes γ1 = cos δ and γ2 = sin δ, we reduce
system (27) to the mathematical pendulum equation

Bδ̈ + P
√
x20 + z20 sin(δ − ν) = 0, ν = tan(z0/x0).
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Thus, for any energy value chosen, an attracting cycle (in the large) is constructed for the
Mlodzeevskii oscillation. As in Example 3, the attraction to the manifold (26) is ensured by linear
dissipation in the variables p, r, and γ2.

Together with the planar Mlodzeevskii oscillations, the body under study admits a second family
of pendulum oscillations [27]. Being spatial, this family is described by a reduced conservative
system with one degree of freedom and is separated, step by step, from system (25) with y0 = 0
when constructing the reduced system. Stabilization of the oscillations (in the large) is performed
according to the theory of Sections 2–4.

Remark 3. These examples have presented new results for the corresponding problems.

7. CONCLUSIONS

In a conservative system, oscillations form families. Therefore, an oscillation can be stabilized
only within a controlled system. Control laws with an explicit time dependence are commonly
used.

For a conservative system admitting an oscillation family, a ε-corrected system with an attracting
cycle (in the large) is always constructed. An autonomous controller with a small gain is applied. It
is given by nonlinear dissipation that acts without delay at the current trajectory point and tracks
the potential energy of the system. The attraction domain of the cycle includes the oscillation
domain Ω of the conservative system and the ε-neighborhood of Ω. The cycle is constructed for an
oscillation with any desired energy of the conservative system. Stabilization is performed according
to the adaptive scheme.

The main results of this study have been formulated in three theorems. Theorem 1 shows the
existence of a cycle and provides a solution of the stabilization problem in the small (in the neigh-
borhood of the oscillation considered). Next, Theorem 2 establishes the attraction of trajectories
evolving from any point of the oscillation domain of the conservative system to the cycle. Theo-
rem 3 extends the results of Theorems 1 and 2 (for a system with one degree of freedom) to the
multidimensional case, including the corresponding corrected Lagrangian system. New results in
classical problems have been annotated in the examples.

The paper has settled several issues in nonlinear mechanics, oscillation theory, bifurcation, and
control theory. In classical mechanics, only linear dissipation is considered. This study gives
an example of universal nonlinear dissipation defined by potential energy. It can also explain
phenomena in nature.

To investigate the family of nonlinear oscillations of a conservative system, we have proposed
to apply the theory of linear systems. The corresponding result (Theorem 4) is postponed to the
Appendix, finalizing the author’s efforts to present the main material in a comprehensible way. The
idea of introducing new time brings the system of nonlinear oscillations to an isochronous family.

The conclusions on attraction in the large have become qualitatively new in bifurcation theory:
a small parametric perturbation of a system leads to a global rearrangement of its phase portrait.

Concerning control theory, we have suggested the idea of utilizing the nature of an unclosed
system. The control law designed is only corrective. In Examples 3 and 4, the stabilization scheme
has been demonstrated on classical problems. Other applications include the problems of orbital
stabilization of spacecraft in long-range missions. Here, the main constraint is the energy resource.
Therefore, maneuvers using gravitational attraction (potential energy) are in demand.
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APPENDIX

Transforming a family of nondegenerate (nonlinear) oscillations to an isochronous family

Consider the conservative system

ẍ+ f(x) = 0,
ẋ2

2
+

∫
f(x)dt = h(const),

admitting a family Σ of nondegenerate single-frequency oscillations. On the nondegenerate family,
by definition, the period T (h) varies monotonically with h.

Theorem 4. The nondegenerate oscillation family Σ = {x(h, t)} of a conservative system is al-
ways transformed to an isochronous family with time τ = (T (h)/T ∗)t, which is chosen together with
the period T ∗ of the family oscillation, the potential energy Π̃(x) = Π(x)(T ∗/T (h))2 and the total
energy h̃ = h(T ∗/T (h))2. On the family Σ, the law

x2
(
h

(
T ∗

T (h)

)2

, 0

)
= h

(
T ∗

T (h)

)2

relates the amplitude and energy of the oscillations.

Proof. The potential energy Π(x) is a function of one variable x. It depends on h through the
solution x = ϕ(h, t). When passing to the new independent variable τ = (T (h)/T ∗)t, the period
on the oscillation becomes T ∗, so x is a T ∗-periodic function of the variable τ. This occurs for all
oscillations of the family, which is thus transformed to an isochronous family with period T ∗. For
an oscillation with zero initial velocity, we have Π(x(h, 0)) = h. The initial value h is preserved in
the function x(h, τ); therefore,

Π = hz(τ), 0 � z(τ) � 1, z(τ) = z(τ + T ∗).

With the new independent variable τ, the energy integral on the family of oscillations takes the
form (

T (h)

T ∗

)2 (dx
dτ

)2

= 2(h−Π). (A.1)

In a more conventional representation, we obtain(
dx

dτ

)2

= 2(h̃− Π̃), h̃ = h

(
T ∗

T (h)

)2

, Π̃ = Π(x)

(
T ∗

T (h)

)2

. (A.2)

The oscillations with initial zero velocity in the transformed system are described by

x(τ) = x(h̃, 0)e(τ), 0 � e(τ) � 1, e(τ) = e(τ + T ∗).

On these oscillations, the law
x2(h̃, 0) = h̃ (A.3)

expresses the dependence of the amplitude of isochronous oscillations on the system energy h̃.
Hence, the amplitude of nonlinear oscillations on the family Σ depends on the energy h according
to the law

x2
(
h

(
T ∗

T (h)

)2

, 0

)
= h

(
T ∗

T (h)

)2

. (A.4)

Remark 4. In the case of a linear oscillator in (A.3), the function T (h) reduces to a constant
and the dependence (A.3) is known.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



STABILIZATION OF OSCILLATIONS 543

REFERENCES

1. Tkhai, V.N., Stabilization of Oscillations of a Controlled Autonomous System, Autom. Remote Control,
2023, vol. 84, no. 5, pp. 534–545.

2. Tkhai, V.N., An Adaptive Stabilization Scheme for Autonomous System Oscillations, Autom. Remote
Control, 2024, vol. 85, no. 9, pp. 894–905.

3. Pontryagin, L.S., On Dynamic Systems Close to Hamiltonian, Zh. Eksp. Teor. Fiz., 1934, vol. 4, no. 9,
pp. 883–885.

4. Van der Pol, B., Forced Oscillations in a Circuit with Non-linear Resistance (Reception with Reactive
Triode), The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1927,
ser. VII, vol. 3, no. 13, pp. 65–80.
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Abstract—The article is devoted to the development of mathematical support for the solution
to an applied problem of the available bandwidth estimation for a network data transmission
channel based on the indirect observations of one of the transmitted flows. The problem is
transformed to the state filtering of a Markov jump process given some indirect perfect (noise-
less) and counting observations. The obtained estimates are represented as solutions to some
coupled systems of ordinary differential equations and recursive relations. The performance of
the proposed estimates is illustrated by a numerical example.
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1. INTRODUCTION

The problem of real-time available bandwidth (ABW) estimation in various telecommunication
channels [1–4] is highly relevant for its results to be further used in

— computer network management systems to control the efficiency of network resources utiliza-
tion,

— congestion control algorithms of the transport protocols,
— multimedia information streaming systems,
— algorithms for resource allocation of software defined networks, etc.

The way ABW and related numerical indicators are understood varies in different publications
and may imply

— maximum residual capacity of the given channel at the current load by external flows,
— maximum data transmission rate (throughput) through the channel ensured using some fixed

protocol (UDP, TCP, etc.) at the current load by external flows,
— maximum rate of useful data transmission (goodput) through the channel at the current load

ensured using the selected protocol under additional requirements to the quality of service
(QoS) such as maximum permissible delay, jitter, packet loss ratio, etc.

Currently, there is a whole palette of hardware and software tools for solving this problem.
In terms of the statistical information involved, they are divided into active and passive. Active
ones use additional service traffic, which is a sequence of small packets, possibly of variable size.
The difference between the packets sent and received, including the gaps between them, serve
as the basis for calculating the current ABW value. In passive tools, this value is calculated
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on the basis of information about the real current traffic in the given channel collected with the
help of operating systems tools (such as the tcpdump utility). We should separately mention the
ABW estimation tools based on channel models constructed mainly on queuing systems. It applies
simulation modeling rather than real statistical information.

Processing of real data for ABW estimation relies on relatively simple probabilistic models,
in particular, linear stochastic observation systems. These are the ones that allow applying the
classical Kalman filter [5–7]. At present, the theory of state estimation of stochastic dynamic
systems is sufficiently developed, within its framework one can select a model more similar to the
operation of a network channel and construct a numerically efficient algorithm for it that estimates
the state of the system based on the available data.

This work deals with using the mathematical framework of Markov jump processes (MJP)
to construct mathematical models of packet data transmission channels. They are designed to
solve the problem of real-time estimation of channel characteristics responsible for ABW from
heterogeneous statistical information. The paper has the following structure. Section 2 introduces
the class of network channels and transmitted data flows under study and the structure of available
observations. The section presents arguments in favor of using the MJP concept to describe the
evolution of channel characteristics.

Section 3 contains the theoretical framework for solving the applied ABW monitoring problem.
Section 3.1 introduces the observation system under study. Its hidden state to be estimated is
a homogeneous MJP with a finite set of states. Some of the observational components are MJP
functions recorded without noise while some are Cox processes whose intensity depends on the
state. The problem of filtering the MJP state using the available observations is proposed to be
considered as a theoretical basis for solving the applied monitoring problem. Section 3.2 deals with
solving it. The sought filtering estimate is described by a system of connected ordinary differential
equations and recurrence relations.

Note that the proposed optimal filtering problem solved in this work differs from the problems
studied in classical monographs [8–10]. In the mentioned works, the structure of observations is
such that they can be transformed to a set of Wiener and Poisson processes by a suitable change
of the probability measure. In that case, the obtained equations could be interpreted to some
extent as different versions of the Kallianpur–Striebel formula [11]. This transition is possible if the
condition of nondegeneracy of martingales in observations is fulfilled. By contrast, in the proposed
stochastic system, however, some of the observations do not contain noise at all, which makes it
impossible to apply the Girsanov transformation of the measure. At the same time, the equations
describing the optimal filtering estimate can be treated as a special case of the abstract formula
for the optimal filtering of a semimartingale given the observation of semimartingale [12].

Section 4 contains an illustrative example of solving the ABW channel monitoring problem. The
channel processes two independent packet flows. The first one is described by a Poisson process with
the known intensity. The second hidden flow is described by a Cox process whose intensity varies
according to some MJP. The observations include the number of packets from the first flow present
in the channel and the sequence of the packets lost from this flow due to congestion. The channel
itself is a simple exponential service element with the known intensity combined with a pool of
packets of the known capacity. Packets from the pool are randomly selected for transmission. The
current ABW depends on its occupancy rate and the intensity of packets arriving from the second
flow, so these are the characteristics that are proposed to be estimated. Since no service packet
flows are used to obtain statistical information, the proposed monitoring algorithm is categorized
as passive. The numerical experiment presented in the section illustrates the high quality of the
proposed estimates.

Section 5 presents the analysis of the obtained results and directions for further research.
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2. STATEMENT OF THE APPLIED PROBLEM
OF AVAILABLE BANDWIDTH MONITORING

We describe the functioning of a network channel of packet data transmission in the form of a
controlled stochastic observation system. The channel ensures data transmission of several data
flows described by individual characteristics such as

— the intensity of packet arrival from the flow,

— the size of individual packets,

— the total amount of transmitted data,

— the data transmission control protocol, etc.

The channel itself is a set of telecommunication equipment and transmission lines characterized
by

— the number of channel hops and their characteristics,

— characteristics of individual network devices (capacity, buffer sizes, internal software charac-
teristics), etc.

Ideally, the channel state is a “snapshot” of the location and movement of the various target
and service packets in all parts that make up the given channel, as well as all input and output
packet flows, including lost packets.

The channel ABW estimation problem is to determine the maximum packet data flow that
could be transmitted through the channel given its current load. In this statement, the problem is
unlikely to have an exhaustive solution due to the following facts.

(1) Determining the maximum data flow that can be additionally transmitted through the
channel in its current state depends on a number of additional characteristics such as the type
of additional data (the protocol type), reliability of data transmission, etc. The point is that
the additional bandwidth must be calculated taking into account all overheads and redundancy,
including the transmission of service packets, retransmission of lost data and so on. For example,
the bandwidth for the subsequent use of UDP traffic will be higher than for TCP since the latter
involves resending packets which are not confirmed by the reciever via a special acknowledgement
flow.

(2) The channel state mentioned above must have a huge dimension that prevents it from being
used in any practical estimation tasks.

(3) The channel characteristics contain uncertainties of different nature, viz.

— the parameters of the individual transmission hops, which form the channel, are usually
unknown,

— characteristics of communication devices (their transmission speed,, buffer/storage size) are
partially or completely unknown,

— the firmware of the communication devices is proprietary with unknown performance and
implemented algorithms,

— network channelling equipment may be simultaneously used by several channels, entailing
additional uncertainty of its performance.

(4) Data flows transmitted by the channel also have properties that negatively affect the quality
and the very possibility of solving the ABW monitoring problem as they are nonstationary, contain
a priori uncertainty in their characteristics, and are partially or completely unobservable due to
information security and access sharing restrictions.

In addition, the model is bulky for solving the mentioned practical problem. For this purpose,
it is sufficient to consider only the “bottle neck” of the channel, viz. the section with the lowest
performance. At the same time, relatively simple queuing systems consisting of service elements,
queues or temporary packet storage buffers can be used to describe its operation.
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Packet flows can be described by generalized renewal processes [13] — the latter both represent
random event flows and may contain some additional packet header information important for
subsequent estimation of the channel characteristics. Generally speaking, statistical information
available for passive ABW monitoring can include

— part of input information flows,
— part of packet loss flows arising due to various reasons,
— part of service flows such as acknowledgements,
— characteristics of buffer occupancy with packets of the observable flows,
— additional numerical characteristics of individual packets of observable flows, (individual num-

bers, packet sending/receiving timestamps, etc.).

The state of the communication channel should determine the pair “bottleneck state — total
load of the channel”. In their mathematical nature, the available observations can also be divided
into two different categories, viz. counting processes with their intensity depending on the system
state and some functions of the system state observed without additional noise.

As mentioned above, the ABW of a real channel depends on the type of additional load; however,
in any case, it will be described by some function of the system state—the current total intensity
of packet flows entering the channel and the degree of the channel occupancy. These are the ones
that are proposed to be estimated using the available statistical information and then recalculated
into ABW of the added flow of some type.

The additional assumption of the Markov property of the observation system under study is
certainly a limitation. Nevertheless, it does not appear to be excessive. First, semi-Markov systems
(Markov recovery processes) can be reduced to such systems by a suitable extension of the state
vector [14–16]. Second, a wide class of non-Markov systems can be approximated using Markov
systems [17]. Third, the mathematical framework of Markov processes supported by the theory of
martingales allows us to solve a wide class of optimal state and parameter estimation problems.
All these conclusions explain the subsequent choice of stochastic differential observation systems
class describing the channel state and its filtering.

3. OPTIMAL FILTERING PROBLEM FOR THE STATE OF A MARKOV JUMP PROCESS
BY A SET OF NOISELESS AND COUNTING OBSERVATIONS

In what follows, we use the following designations.

— IA(x) is the indicator function of the set A,
— S

N = {e1, . . . , eN} is the set of coordinate unit vectors in R
N ,

— col(a1, . . . , aN ) is the column vector composed of the components an, n = 1, N ,
— diag(a) – is a diagonal matrix with the vector a as the diagonal,
— a ∧ b � min(a, b).

3.1. Statement of the Filtering Problem

On the complete probability space with filtration (Ω,F ,P, {Ft}t�0) we consider the observation
system

θt = θ0 +

t∫
0

A�θsds +Mθ
t , θ0 ∼ π0, (1)

ξt = Cθt, (2)

ηt =

t∫
0

Gθsds+Mη
t , (3)
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where

— θt = col(θ1t , . . . , θ
N
t ) ∈ S

N is an unobservable system state representing the Ft-adapted homo-
geneous MJP with the values in S

N , the transition intensity matrix (TIM) A, and the initial

distribution π0; M
θ
t = col(Mθ,1

t , . . . ,Mθ,N
t ) is an Ft-adapted martingale,

— ξt = col(ξ1t , . . . , ξ
M
t ) ∈ R

M is a noiseless (perfect) observation process; C ∈ R
M×N is the ob-

servation plan matrix with the columns cn, n = 1, N ;
— ηt = col(η1t , . . . , η

K
t ) ∈ R

K is an observable process with counting components: the matrix
G ∈ R

K×N determines conditional jump intensities of individual components η depending on
the current state θ (G consists of the rows gk, k = 1,K); Mη

t = col(Mη,1
t , . . . ,Mη,K

t ) – is an
Ft-adapted martingale.

Suppose Ot � σ{ξs, ηs : 0 � s � t} be the natural flow of σ-algebras generated by observable
processes. The optimal filtering problem for the state θt is to calculate the conditional mathematical
expectation (CME) θ̂t � E {θt|Ot}, t ∈ [0, T ]; T <∞ is some finite deterministic instant.

We assume that the considered probability triplet with filtration and the observation system
satisfy the following conditions.

A) Ft ≡ σ{θs, ηs : 0 � s � t} for ∀ t ∈ [0, T ].

B) The martingale components Mη,k
t of the counting observations ηkt are strongly orthogonal to

each other and also orthogonal to the martingale Mθ
t in MJP θt:

〈η, η〉t =
t∫

0

diag(Gθs)ds, 〈η, θ〉t ≡ 0.

C) Let {τj}j∈Z+ be the instants of jumps in the block process (θt, ηt), and {ζj}j∈Z+ be the

instants of observation jumps (ξt, ηt), τ0 = ζ0 � 0. We assume that

lim
j→+∞

τj = lim
j→+∞

ζj = +∞ P− a.s.

Then, Markov points τ ′j � τj ∧ T and ζ ′j � ζj ∧ T will be bounded by the constant T . In what
follows, the primes in the designations of the Markov points are omitted for simplicity.

The intensity matrix G of counting observations can be an arbitrary matrix of a suitable di-
mension consisting of non-negative elements. There are no such restrictions on the matrix of exact
observations C, and it only has to have a suitable dimension. Nevertheless, in practice, the matrix
C consists of 0 and 1. Often, noiseless observations ξt are represented by information about what
some set S

′ ⊂ S
N contains at the current instant θt. In this case, the respective row of C will

consist of the indicators IS′(en), n = 1, N .

3.2. Solving the Filtering Problem

Let C be the set of different columns of the matrix C. We construct the mapping Ξ : C → R
1×N

as follows:
Ξ(c) �

∑
n: Cen=c

e�n .

Ξ(·) characterizes the complete preimage of the mapping e→ Ce in the following sense:

diag(Ξ(c))e =

{
e, if Ce = c,
0 otherwise.

We denote: θ � θζ� , ξ � ξζ� , η � ηζ� . We consider a non-decreasing sequence of σ-algebras
Oj � σ{ζ, ξ, η : 0 � � � j}. It is known [19] that Oj ≡ Oζj for all j ∈ Z+.
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We also construct families of σ-algebras

Oj,t � σ{A ∈ Oj, {ω : t ∈ [ζj(ω), ζj+1(ω))}}.

Obviously, the σ-algebras Oj,t are richer than Oj , as they are augmented with random events of the
form {ω ∈ Ω : ζj(ω) � t < ζj+1(ω)}, which carry the following meaning: there have been exactly j
jumps of observations by the instant t.

To derive optimal filtering equations, the following auxiliary propositions are required.

Lemma 1. Suppose π̂j � E
{
θζj |Oj

}
. Then P-a.s. the following equalities are true

I[ζj,+∞)(t)E
{
θtI[ζj ,ζj+1)(t)|Oj

}
= I[ζj ,+∞)(t)mt, (4)

I[ζj,ζj+1)(t)E {θt|Oj,t} = I[ζj ,ζj+1)(t)μt, (5)

where the functions mt and

μt = (1mt)
−1mt (6)

are the solutions to the following systems of ordinary differential equations:⎧⎪⎪⎨⎪⎪⎩
ṁt =

[
diag(Ξ(ξj))A

� −
K∑
k=1

diag(gk)

]
mt, t > ζj ,

mζj = π̂j ,

(7)

⎧⎪⎨⎪⎩ μ̇t =

[
diag(Ξ(ξj))A

� −
K∑
k=1

diag(gk)

]
μt − μt

[
Ξ(ξj)A

� −
K∑
k=1

gk
]
μt, t > ζj ,

μζj = π̂j.

(8)

Proof of Lemma 1 is given in Appendix.

Lemma 2. The estimate π̂j+1 � E
{
θζj+1

|Oj+1

}
is specified by the formula

π̂j+1 =
K∑
k=1

(
gkμζj+1

)−1
diag(gk)μζj+1

(ηkj+1 − ηkj )

+
(
Ξ(ξj+1)A

�μζj+1

)−1
diag

(
Ξ(ξj+1)

) (
I − diag

(
Ξ(ξj)

))
A�μζj+1

,

(9)

where the vector μζj+1
is the solution to (8) taken at the instant ζj+1.

The proof of Lemma 2 is given in the Appendix.

Lemmas 1 and 2 allow us to prove the main proposition of this work.

Theorem 1. The optimal filtering estimate θ̂t can be represented as

θ̂t = E {θt|Ot} =
∑
j�0

I[ζj ,ζj+1)(t)μt, (10)

where the functions μt are specified by the solution of (8) on the intervals [ζj, ζj+1). At the in-

stants ζj+1 of jumps of observations (ξt, ηt), the estimate θ̂j+1 = π̂j+1 is calculated using recurrence
relation (9); the filtering estimate at the initial instant is

θ̂0 = (Ξ(ξ0)π0)
−1 diag (Ξ(ξ0))π0. (11)
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The estimate θ̂t is the solution to the stochastic system

θ̂t = (Ξ(ξ0)π0)
−1 diag (Ξ(ξ0)) π0

+

t∫
ζj

[(
diag(Ξ(ξs))A

�−
K∑
k=1

diag(gk)

)
θ̂s− θ̂s

(
Ξ(ξs)A

�−
K∑
k=1

gk
)
θ̂s

]
ds

+
∑

ζj :ζj�t

[
K∑
k=1

(
gkθ̂ζj−

)−1
diag(gk)θ̂ζj−Δη

k
ζj

+
(
Ξ(ξζj)A

�θ̂ζj−
)−1

diag
(
Ξ(ξζj)

) (
I − diag

(
Ξ(ξζj−)

))
A�θ̂ζj− − θ̂ζj−

]
.

(12)

Theorem 1 is proved in the Appendix.

Remark 1. Although the integral part of final equation (12) is nonlinear and corresponds to (8),
linear system (7) also plays an important role in the numerical implementation of the filtering
algorithm. Note that (8) represents a system of Riccati differential equations, numerical solution of
which may be difficult for some sets of parameters. The point is that the exact solution μ satisfies
the conditions of non-negativity and normalization, and the approximate solution must satisfy the
same conditions. Otherwise it loses the probabilistic sense of the conditional distribution, and the
approximation itself diverges. To neutralize this disadvantage, more complicated numerical solution
algorithms can be used or the time step can be reduced. In contrast to direct numerical solution
of (8), μt can be computed using (7) exactly for any value of the time step h. For this purpose, it is

sufficient to compute once the exponential Q = exp
[
h
(
diag(Ξ(ξj))A

� −∑K
k=1 diag(g

k)
)]

and the

sum of its rows q = 1Q. Then the exact values of the conditional distribution μζj+ih on a uniform
time grid with step h, starting at ζj , can be calculated by the simple recurrence

μζj+(i+1)h =
1

qμζj+ih
Qμζj+ih, i ∈ N.

4. NUMERICAL EXAMPLE OF AVAILABLE BANDWIDTH ESTIMATION

We present the channel structure and the structure of information transmitted through it in
more detail. Figure 1 shows the channel operating scheme.

Fig. 1. Scheme of operation of the network channel.
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Data in the form of packets arrive in the channel from two independent flows. The first flow—the
simplest one with the intensity μ—is partially observable. The second, completely unobservable,
is described by a Cox process with the intensity κt taking values from the set {κs}s=1,S and
varies according to a hidden homogeneous MJP with the known transition intensity matrix Λ =
‖Λij‖ij=1,S. In fact, the second flow is an external integral non-stationary load.

A transmission channel is a service element that can simultaneously contain no more than
Np transmitted packets. Packets arriving in a completely occupied channel are lost. When the
channel is not empty, it transmits a packet, spending a random time on it that has an exponential
distribution with the constant parameter ν. The transmitted packet is chosen randomly from
packets of both flows—if there are q′ packets of the first flow and q′′ packets of the second flow in
the channel at the given instant, then the probabilities that a packet from the first or the second
flow will be transmitted are q′

q′+q′′ and
q′′

q′+q′′ , respectively. Thus, the considered model implements
the Active Queueing Management mechanism [19], which provides different flows with fair access
to resources in proportion to the number of packets of each flow that are in the channel.

Obviously, the current channel bandwidth is determined by two variables hidden from direct
observation, viz. The amount of packets in the server qΣt � q′t + q′′t and the total packet arrival
intensity from the two flows κΣ

t � μ+ κt. These two processes are being monitored.

The arrival processes of packets of both flows into the channel and their processing are described
by a unified MJP with a finite set of states θt = (st, q

′
t, q

′′
t ), where st is the current state of the second

flow (s = 1, S), q′t is the number of packets of the first flow in the server, and q′′t is the number of
packets of the second flow in the server (0 � q′, q′′ : q′t + q′′t � Np). One can easily check that the

total number of possible MJP states is N = S(Np+1)(Np+2)
2 .

The matrix A of MJP transition intensities Xt is defined element by element as follows:

— (i, q′, q′′)
Λij

−−→ (j, q′, q′′), (i, j = 1, S, i �= j, q′, q′′ � 0 : q′ + q′′ � Np) — change of intensity
of the second flow from κ

i to κ
i;

— (s, q′, q′′)
μ−→ (s, q′ + 1, q′′), (s = 1, S, q′, q′′ � 0 : q′ + q′′ � Np − 1) — arrival of a new packet

of the first flow into the channel;

— (s, q′, q′′)
κs

−→ (s, q′, q′′ + 1), (s = 1, S, q′, q′′ � 0 : q′ + q′′ � Np − 1) — arrival of a new packet
of the second flow into the channel;

— (s, q′, q′′)
q′

q′+q′′ ν−−−−→ (s, q′ − 1, q′′), (s = 1, S, q′ > 0, q′′ � 0 : q′ + q′′ � Np) — transmission of
the first flow packet through the channel;

— (s, q′, q′′)
q′′

q′+q′′ ν−−−−→ (s, q′, q′′ − 1), (s = 1, S, q′ � 0, q′′ > 0 : q′ + q′′ � Np) — transmission of
the second flow packet through the channel.

To estimate the characteristics qΣt and κ
Σ
t , one can use the following statistical information:

— continuous observations of the number of packets of the first flow currently in the channel:
ξt = q′t,

— the process that counts packet losses of the first flow caused by channel overflow: ηt =∫ t
0 I{Np}(q

Σ
u )μdu+Mη

t .

We performed numerical experiments for the following parameter values: Np = 32, S = 3,
N = 1683, μ = 1, ν = 13, T = 2000,

Λ =

⎡⎢⎣−0.002 0.001 0.001
0.001 −0.002 0.001
0.001 0.001 −0.002

⎤⎥⎦ , κ =

⎡⎢⎣ 1
5
11

⎤⎥⎦ .
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Fig. 2. Evolution of channel load and available observations.

The initial distribution of the MJP describing packet transmission coincides with a stationary one.
Simulation of all processes and search for the numerical solution to the optimal filtering problem
was performed with the time step h = 0.01.

Figure 2 gives information about the hidden state of the channel and available observations:

— the hidden intensity state of the second flow κt (displayed as the background filling),
— the hidden channel load qΣt ,
— the observed number of packets of the first flow ξt that are in the channel,
— the observable counting process of packet losses of the first flow ηt (the values are displayed

on the right ordinate axis).

The MJP state filtering estimate θ̂t obtained by solving (12) is a vector whose components are
conditional probabilities P {st = S, q′t = Q′, q′′t = Q′′|Ot}. Using the vector θ̂t, we can calculate the
estimates of the current total channel load q̂ Σt :

q̂ Σt =
∑

s,q′,q′′
(q′ + q′′)P

{
st = s, q′t = q′, q′′t = q′′|Ot

}
, (13)

and the estimates κ̂
Σ
t of the current total intensity of the packets arriving in the channel:

κ̂
Σ
t =

∑
s,q′,q′′

κ
sP
{
st = s, q′t = q′, q′′t = q′′|Ot

}
. (14)

These characteristics, in turn, allow for real-time ABW estimation under different QoS condi-
tions. We consider the channel operating with the assumption that the second flow is also simple
with the constant intensity κ. Depending on this parameter, we calculate the average number of

packets in the channel E
{
qΣ
}
= E(κ) and the probability P

{
qΣ = Np

}
= P(κ) of the packet loss

in the stationary mode. Figure 3 shows the dependences E(κ) and P(κ) (on the auxiliary ordinate
axis).

Suppose that the QoS requirement is fixed in the form of an upper bound for the packet loss
probability P. We assume that the maximum bandwidth of this channel B equals the total intensity
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Fig. 3. Average number E(κ) of the packets in the channel and probability of packet loss P (κ).

of both flows, provided that the packet loss probability does not exceed P : B � P−1(P) + μ.
For example, if we choose P = 0.05 the respective maximum bandwidth is B = 12.45. Then, we
propose to take the difference Ba

t � B − κ
Σ
t , i.e., such a maximum addition to the current intensity

of the second flow that does not violate the packet loss probability constraint, as the ABW at the
instant t. However, the variable κ

Σ
t cannot be observed directly, so we propose to use the variable

B̂a
t � max(B − κ̂

Σ
t , 0), which is a function of the obtained estimate κ̂

Σ
t , as an ABW estimate.

We consider another type of QoS requirement in the form of an upper bound T for the average
packet transmission time. If a packet is currently on the server with the current total number
of packets qΣt and the channel is in the stationary mode, the average transmission time can be

characterized by
qΣt
ν . Thus, for this QoS requirement to be met, the maximum allowable number of

packets being simultaneously at the server should not exceed Q = Tν. For example, if we choose
T = 1 the upper value Q = 13 and the respective maximum bandwidth is B = E−1(13) = 11.55.
As an ABW estimate, we propose to use the variable B̂a

t � max(B − E−1(q̂Σt ), 0) which is a function
of the obtained estimate q̂Σt .

Figure 4 shows the evolution of the channel load and its estimate:

— the hidden intensity state of the second flow κt (displayed as the background filling),

— the total hidden channel load qΣt ,

— the estimate of the total channel load q̂Σt ,

— the observed number of packets of the first flow ξt that are in the channel.

The upper graph shows the trajectories over the entire estimation interval [0; 2000], the lower
one shows the interval [450; 650]. Note that a more detailed graph shows the piecewise continuous
nature of the estimate: a continuous trajectory on the intervals of no jumps in observations and its
jump change corresponding to a jump in observations. The registration of packet loss of the first
flow unambiguously signals that the channel is full at the moment, i.e., qΣt = Np. The presented
filtering estimate behaves in full accordance with this conclusion—at the instant t = 485.91, there
is a packet loss, and the estimate q̂Σt coincides with the real channel load qΣt , which is Np, at this
instant.
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Fig. 5. Total packet arrival intensity and its estimate.

Figure 5 shows the evolution of the total packet arrival intensity in the channel and its estimate:

— the hidden intensity state of the second flow κt (displayed as the background filling),

— the packet arrival intensity κ
Σ
t ,

— the intensity estimate κ̂
Σ
t .

The upper graph shows the trajectories over the entire estimation interval [0; 2000], the lower
one shows the interval [450; 650]. Note that the more detailed graph also shows the piecewise
continuous nature of the estimate.

Analyzing the graphs, we can conclude that the proposed estimates of the current characteristics
of the channel bandwidth have high accuracy. We compare it with the accuracy of the trivial
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estimation, viz. unconditional mathematical expectation of the processes qΣt and κ
Σ
t calculated for

the MJP stationary distribution X. The accuracy of the trivial estimates E
{
qΣ
}
and E

{
κ
Σ
}
is

characterized by the variances D{qΣ} and D{κΣ}. As accuracy metrics for the proposed estimates
we employ the following indices

εq = 1−

T∫
0
E
{
(q̂Σt − qΣt )

2dt
}

TD{qΣ} and εκ = 1−

T∫
0
E
{
(κ̂Σ

t − κ
Σ
t )

2dt
}

TD{κΣ} ,

which can be considered as analogues of the determination coefficients accepted in mathematical
statistics [20]. In this example, the numerators of both indicators are obtained by the Monte Carlo
method using a bundle of trajectories NMC = 10000: εq = 0.76 and εκ = 0.94.

5. CONCLUSIONS

In this work, we study the applied problem of real-time ABW estimation for a packet transmis-
sion channel using observations of one of the data flows served. The available observations include
information on the number of packets of the flow currently in it, as well as the counting process of
the packet losses. Since the proposed estimation procedure does not need to generate additional ser-
vice flows through the channel that drain its resources, the proposed monitoring algorithm belongs
to the passive class.

The principal idea that allowed us to construct an efficient numerical estimation algorithm is
to use a partially observable MJP to describe the channel operating and incoming flows. The
statistical information includes a set of some state functions observed without noise and counting
processes whose intensity depends on the estimated state. The obtained filtering estimate is given
by a sequence of recurrently connected ordinary differential equations calculated in the intervals
between jumps of observations and discrete transformations that update the estimates at instants
of changes in the observations. The work gives numerical experimental results illustrating the high
quality of the presented estimates.

The research in the field of constructing efficient algorithms for ABW channel estimation can be
continued in the following directions. First, it is of practical interest to solve the ABW estimation
problem for an exponential element with a limited queue for the case of the non-stationary flow of
incoming packets described here.

Second, it is important for telecommunication applications to complicate the model of channel
and incoming flow operating by switching from Markov to semi-Markov processes.

Third, the ABW estimation problem was solved under conditions of full a priori information
about the channel and flows transmitted through it. The construction of procedures for adaptive
estimation of probabilistic parameters of the “channel-flows” pair and robust upgrading of the
proposed monitoring algorithm also seems promising.

Fourth, the available statistical information in real data transmission networks is much richer
than that used in this paper. For example, there are data linking the packet flows at the channel
input and output, there is information about the individual transmission time of each packet, and
so on. All this information included in the observation system may cause the extended stochastic
observation system to cease to be Markov, which radically complicates the ABW estimation algo-
rithms. Therefore, it seems promising to extend the class of observation systems in a way that,
on the one hand, preserves the Markov property of the suitably extended system state and, on the
other hand, allows us to use some of the additional statistical information similarly to [21, 22].

Fifth, using MJP with a finite set of states to solve applied problems involves very serious
complexity. It consists of the rapid growth of the MJP dimension. Indeed, even in the considered
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numerical example with the channel capacity K = 3 and three possible variants of external load,
the total number of MJP states is 48. We should also take into account that different states
are described by vectors of dimension 3 rather than by scalar values, which leads to an additional
increase in the amount of RAM required to implement the filtering algorithm. These circumstances
make it topical to develop special efficient software that implements the estimation algorithms in
stochastic observation systems with MJP.
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APPENDIX

Proof of Lemma 1. To derive systems (7) and (8), we use the method of moments—we construct
closed linear stochastic differential systems describing the evolution of the state up to the next
observation jump and average them.

If {ζη,k }∈Z+, k=1,K are the jump instants of the components of the counting observations η,

and {ζξ }∈Z+ are the jump instants of the perfect observations ξ, the instant ζj+1 following ζj is
determined using an obvious recurrence

ζj+1 = min
ζη,k
�

>ζj , ζ
ξ

�′>ζj

(ζη,k , ζξ′).

On the interval [ζj ,+∞) we study the process

Ut � I[ζj ,ζj+1)(t) = I
[ζj ,ζ

ξ

�′)
(t)︸ ︷︷ ︸

�Vt

K∏
k=1

I
[ζj ,ζ

η,k
�

)
(t)︸ ︷︷ ︸

�W k
t

.

By construction, on any interval [ζj, t) processes Vt and W
k
t experience no more than one jump,

and the relations hold

diag(Ξ(ξj))θt ≡ θζj for ∀ t ∈ [ζj , ζ
ξ
′), diag(Ξ(ξj))θζξ

�′
= 0.

By the Doleans formula [23] the processes Vt and W k
t can be represented as solutions of the

equations

Vt = I[ζj ,+∞)(t)

⎛⎜⎝1 +

t∫
ζj

Vs−Ξ(ξj)dθs

⎞⎟⎠ , (A.1)

W k
t = I[ζj ,+∞)(t)

⎛⎜⎝1−
t∫

ζj

W k
s−dη

k
s

⎞⎟⎠ . (A.2)
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Indeed, the process
∫ t
ζj
Ξ(ξj)dθs is a purely discontinuous semimartingale, and the solution of

equation (A.1) by the Doleans formula has the form

Vt = I[ζj ,+∞)(t) exp
[
Ξ(ξj)(θt − θζj)

] ∏
s: ζj<s�t

(
1 + Ξ(ξj)Δθs

)
. (A.3)

If the process θ did not have any jumps prior to the instant t, then Vt = Vζj = 1. If at time
s > ζj the first jump of θ occurred that did not lead to any jump of observations ξ, i.e., Δξs = 0,
then

Ξ(ξj)(θs − θs−) = Ξ(ξj)(θs − θζj) = 0,

and according to (A.3) Vs = 1. The process V will preserve the same value during subsequent jumps
of θ that do not lead to jumps of observations ξ. If at time s > ζj the first jump of θ occurred that

led to a jump of observations ξ, i.e., ξs �= ξs− = ξj and s = min
ζξ
�′>ζj

ζξ′ , then

Ξ(ξj)(θs − θs−) = Ξ(ξj)θs − Ξ(ξj)θs− = 0− 1 = −1,

and according to (A.3) Vs = 0. The process Vt will further preserve the same value. Thus, we
showed that the solution of equation (A.1)—process (A.3)—coincides with the process I

[ζj ,ζ
ξ

�′)
(t) on

the ray [ζj,+∞). We can similarly prove that the processes W k
t = I

[ζj ,ζ
η,k
�

)
(t) can be represented

as the solution to Eq. (A.2).

Further, from (1)–(3) it follows that Vt and W
k
t can be expanded as follows:

Vt = I[ζj ,+∞)(t)

⎛⎜⎝1 +

t∫
ζj

Ξ(ξj)A
� θsVs︸︷︷︸

�vs

ds +M1
t

⎞⎟⎠ , (A.4)

W k
t = I[ζj ,+∞)(t)

⎛⎜⎜⎝1−
t∫

ζj

gk θsW
k
s︸ ︷︷ ︸

�wk
s

ds +M2,k
t

⎞⎟⎟⎠ , (A.5)

where I[ζj,+∞)(t)M
1
t and I[ζj ,+∞)(t)M

2,k
t are some martingales. Note that (A.4) and (A.5) can be

interpreted as linear stochastic differential equations with martingales in their right-hand sides.
Nevertheless these equations are not closed: the right-hand side of the equation for Vt contains the
process vt, and the right-hand side of W k

t includes wk
t . From (A.4) and (A.5) we obtain a closed

system of linear stochastic differential equations for the vector process ut � θtUt.

By Ito’s rule and condition (B) the process Ut admits the expansion

Ut = I[ζj ,+∞)(t)

⎡⎢⎣1 + t∫
ζj

⎛⎝dVs K∏
k=1

W k
s− + Vs−

K∑
k=1

∏
i: i �=k

W i
s−dW

k
s

⎞⎠
⎤⎥⎦

= I[ζj ,+∞)(t)

⎡⎢⎣1 + t∫
ζj

(
Ξ(ξj)A

� −
K∑
k=1

gk
)
usds+M3

t

⎤⎥⎦ ,
where I[ζj ,+∞)(t)M

3
t is some martingale. From the definition of processes θ and U it follows that

∑
ζ: ζj<ζ�t

ΔθζΔUζ = −I[ζj,+∞)(t)

t∫
ζj

[
θs−dVs

K∏
k=1

W k
s− − (I − diag(Ξ(ξj)))dθsVs−

K∏
k=1

W k
s−

]
,
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therefore

ut = I[ζj ,+∞)(t)

⎡⎢⎣θζj +
t∫

ζj

(dθsUs− + θs−dUs) +
∑

ζ: ζj<ζ�t

ΔθζΔUζ

⎤⎥⎦
= I[ζj ,+∞)(t)

⎡⎢⎣θζj +
t∫

ζj

(
diag(Ξ(ξj))A

� −
K∑
k=1

diag(gk)

)
usds+M4

t

⎤⎥⎦ ,
(A.6)

where I[ζj ,+∞)(t)M
4
t is some martingale. Calculating CME of both parts of (A.6) with respect

to Oj and using the fact that

E
{
I[ζj ,+∞)(t)M

4
t |Oj

}
= E

{
E
{
I[ζj ,+∞)(t)M

4
t |Fζj

}
|Oj

}
= 0,

we obtain a system of equations equivalent to (7):

mt = π̂j +

t∫
ζj

(
diag(Ξ(ξj))A

� −
K∑
k=1

diag(gk)

)
msds.

The fact that the function can be represented as a solution to (8) follows from the chain rule of
function (6) and system (7).

Suppose A ∈ Oj is an arbitrary set and A′ = A ∩ {ω : ζj+1 > t}. The CME properties lead to
the following sequence of equalities being true

E
{
I[ζj,+∞)(t) (θtIA′(ω)− μtIA′(ω))

}
= E

{
θtI[ζj,ζj+1)(t)IA(ω)− μtI[ζj ,ζj+1)(t)IA(ω)

}
= E

{
E
{
θtI[ζj ,ζj+1)(t)IA(ω)− μtI[ζj ,ζj+1)(t)IA(ω)

}
|Oj

}
= E

{(
E
{
θtI[ζj ,ζj+1)(t)|Oj

}
− μtE

{
I[ζj ,ζj+1)(t)|Oj

})
IA(ω)

}
= E {(mt − 1mtμt)IA(ω)} = 0,

as well as equality (5). Lemma 1 is proved.

Proof of Lemma 2. The sequence {(ζj , θj, ξj, ηj)}j∈Z+ is Markov. We construct the elements
of its transition kernel.

The processes θt(η
k
t − ηkj )I[ζj ,+∞)(t) can be expanded as

θt(η
k
t −ηkj )I[ζj ,+∞)(t) = I[ζj ,+∞)(t)

⎡⎢⎣ t∫
ζj

(
A�θs(η

k
s −ηkj )+diag(gk)θs

)
ds+M5

t

⎤⎥⎦ ,
where I[ζj ,+∞)(t)M

5
t is some martingale. On the other hand,

θt(η
k
t − ηkj )I[ζj ,+∞)(t) = θt (η

k
t − ηkj )I[ζj ,ζj+1)(t)︸ ︷︷ ︸

=0

+θt(η
k
t − ηkj )I[ζj+1,+∞)(t).
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From the last two equalities it follows that

θt∧ζj+1
(ηkt∧ζj+1

− ηkj )I[ζj ,+∞)(t ∧ ζj+1)

= θt∧ζj+1
(ηkt∧ζj+1

− ηkj )I[ζj+1,+∞)(t ∧ ζj+1)

= θj+1(η
k
j+1 − ηkj )I[ζj+1,+∞)(t)

= I[ζj ,+∞)(t)

⎡⎢⎣ t∫
ζj

⎛⎜⎝A� us(η
k
s − ηkj )︸ ︷︷ ︸
=0

+diag(gk)us

⎞⎟⎠ ds+M5
t∧ζj+1

⎤⎥⎦ .
Calculating the CME with respect to Oj of the left and right parts of the last equality and using
the optional stopping theorem of the right-continuous martingale, we obtain that

E
{
θj+1(η

k
j+1 − ηkj )I[ζj+1,+∞)(t)|Oj

}
= E

{
θj+1I{1}(η

k
j+1 − ηkj )I[ζj+1,+∞)(t)|Oj

}
= I[ζj ,+∞)(t)

t∫
ζj

diag(gk)msds = I[ζj ,+∞)(t)

t∫
ζj

diag(gk)μs(1ms)ds.

The considered transition corresponds to a jump of the component ηk, i.e. ζj+1 = ζη,k . Now
consider the case when the transition is generated by a jump of observations ξ, i.e. when ξj+1 �= ξj
and ζj+1 = ζξ . Let c ∈ C (one of the possible values of observation ξ) be some column of matrix C.
Note that

diag(c)
(
I − diag(Ξ(ξj))

)
θj+1 =

{
0, if ξj+1 = ξj,

θj+1, if ξj+1 �= ξj .

The process diag(c)
(
I − diag(Ξ(ξj))

)
θtI[ζj,+∞)(t) can be represented as

diag(c)
(
I − diag(Ξ(ξj))

)
θtI[ζj ,+∞)(t)

= diag(c)
(
I − diag(Ξ(ξj))

) ⎡⎢⎣ t∫
ζj

A�θsds+M6
t

⎤⎥⎦ I[ζj ,+∞)(t),

where I[ζj ,+∞)(t)M
6
t is some martingale. On the other hand,

diag(c)
(
I − diag(Ξ(ξj))

)
θtI[ζj ,+∞)(t)

= diag(c)
(
I − diag(Ξ(ξj))

)
θtI[ζj ,ζj+1)(t)︸ ︷︷ ︸

=0

+ diag(c)
(
I − diag(Ξ(ξj))

)
θtI[ζj+1,+∞)(t).

From the last two equalities it follows that

diag(c)
(
I − diag(Ξ(ξj))

)
θt∧ζj+1

I[ζj ,+∞)(t ∧ ζj+1)

= diag(c)
(
I − diag(Ξ(ξj))

)
θt∧ζj+1

I[ζj+1,+∞)(t ∧ ζj+1)
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= diag(c)
(
I − diag(Ξ(ξj))

)
θj+1I[ζj+1,+∞)(t)

= diag(c)
(
I − diag(Ξ(ξj))

)⎡⎢⎣ t∫
ζj

A�usds+M6
t∧ζj+1

⎤⎥⎦ I[ζj ,+∞)(t).

Again calculating the CME with respect to Oj of the left and right parts of the equality and using
the optional stopping theorem of the martingale, we obtain

E
{
diag(c)

(
I − diag(Ξ(ξj))

)
θj+1I[ζj+1,+∞)(t)|Oj

}
= E

{
θj+1I{c}(ξj+1)

(
1− I{ξj}

(ξj+1)
)
I[ζj+1,+∞)(t)|Oj

}
= I[ζj ,+∞)(t)

t∫
ζj

diag(c)
(
I − diag(Ξ(ξj))

)
A�msds

= I[ζj ,+∞)(t)

t∫
ζj

diag(c)
(
I − diag(Ξ(ξj))

)
A�μs(1ms)ds.

Thus,

P
{
θj+1 = ei, ξj+1 = c, ξj+1 �= ξj , ζj+1 ∈ [t, t+ dt)|Oj

}
= e�i diag(c)

(
I − diag(Ξ(ξj))

)
A�μt(1mt)dt

(A.7)

and

P
{
θj+1 = ei, ξj+1 = ξj, η

k
j+1 − ηkj = 1, ζj+1 ∈ [t, t+ dt)|Oj

}
= e�i diag(g

k)μt(1mt)dt.
(A.8)

Further, we use a technique standard for deriving the equations of optimal state filtering of
Markov observation systems with discrete time [24, 25]. Let (α, β, γ) be a block random vector,
P (A,B|γ) be the conditional distribution of the pair (α, β) with respect to γ, i.e.

P {α ∈ A, β ∈ B|γ} = P (A,B|γ) P− a.s.

Let there also exist a measure χ(a, b|γ) such that P � χ and ρ(a, b|γ) =
= dP

dχ (a, b|γ) be the corresponding Radon-Nikodym derivative. Then the CME E {α|β, γ} can be
computed using the following variant of Bayes formula:

E {α|β, γ} =

(∫
ρ(a′, β|γ)dχ(a′, β|γ)

)−1 ∫
aρ(a, β|γ)dχ(a, β|γ). (A.9)

Formula (9) is a special case of (A.9) obtained by substituting (A.7) and (A.8) into it. Lemma 2
is proved.

Proof of Theorem 1. By direct substitution, we can check that the estimate θ̂t, “glued” from
solutions of systems (8) with jumps described by (9) and initial condition (11), is a solution of (12).
Therefore, to prove the theorem it is sufficient to check the truth of equality (10).

The observable process (ξt, ηt) represents a multivariate point process (MPP) with state space
B � C ×Z

K
+ , which can be represented in the equivalent form of stochastic measure φ [18], defined

on the measurable space ([0, T ]×B,B([0, T ]) × 2B):

φ(ω, dt, dy1, dy2) =
∑
j∈Z+

δ(ζj (ω),ξj(ω),ηj(ω))
(dt, dy1, dy2).
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In [18] it was proved that the natural flow of σ-algebras generated by observations coincides with
the one generated by the stochastic measure, i.e.

σ
{
φ([a, b)× {c} × {z}) : [a, b) ∈ B([0, T ]), c ∈ C, z ∈ Z

K
+

}
≡ Ot, t ∈ [0, T ].

The base of the σ-algebra B([0, T ]) × 2B consists of sets of the form [a, b) × {c} × {z}, so by
virtue of the theorem on monotone classes [23] to prove the truth of equality (10) it is sufficient to
check the validity of equality

E

⎧⎨⎩
⎛⎝∑

j�0

I[ζj ,ζj+1)(t)μt − θt

⎞⎠φ([a, b) × {c} × {z})

⎫⎬⎭ ≡ 0

for all sets [a, b)× {c} × {z} of the base.

From the properties of CME and (4)–(6) follows the sequence of equalities

E

⎧⎨⎩
⎛⎝∑

j�0

I[ζj ,ζj+1)(t)μt − θt

⎞⎠φ([a, b) × {c} × {z})

⎫⎬⎭
= E

⎧⎨⎩∑
j�0

I[ζj ,ζj+1)(t) (μt − θt) I[a,b)(t)
∑
�0

I[ζ�,ζ�+1)(t)I{c}(ξ)I{z}(η)

⎫⎬⎭
= I[a,b)(t)

∑
j�0

E
{
I[ζj ,ζj+1)(t) (μt − θt) I{c}(ξj)I{z}(ηj)

}
= I[a,b)(t)

∑
j�0

E
{
E
{
I[ζj ,ζj+1)(t) (μt − θt) I{c}(ξj)I{z}(ηj)|Oj

}}

= I[a,b)(t)
∑
j�0

E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝I[ζj ,+∞)(t)E
{
I[ζj ,ζj+1)(t)|Oj

}
︸ ︷︷ ︸

=I[ζj ,+∞)(t)1mt

μt

− I[ζj ,+∞)(t)E
{
θtI[ζj ,ζj+1)(t)|Oj

}
︸ ︷︷ ︸

=I[ζj ,+∞)(t)mt

⎞⎟⎟⎟⎟⎠ I{c}(ξj)I{z}(ηj)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = 0.

Theorem 1 is proved.
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Abstract—The paper considers the problem of gravity disturbance determination on the aircraft
flight trajectory using measurements from a strapdown airborne gravimeter. The gravimeter
measurements include raw data from the inertial sensors and global navigation satellite system
(GNSS) receivers. The problem is reduced to optimal stochastic estimation given an a priori
model of gravity disturbance in the time domain and stochastic models of the inertial sensor
measurement errors and the GNSS data errors (the errors of kinematic accelerations derived
from carrier phase measurements). The estimation algorithm is the Kalman filter and smooth-
ing. We show that the accuracy of gravity estimation can be improved when using a refined
model of the kinematic acceleration errors instead of using the traditional model (a white noise
process). The refined model is given as the second difference of a discrete-time white noise.

Keywords : airborne gravimetry, strapdown gravimeter, GNSS, kinematic acceleration errors,
optimal estimation, Kalman filter
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1. INTRODUCTION

Strapdown airborne gravimetry aims to determine gravity disturbance from measurements of
a strapdown gravimeter on the flight trajectory of an aircraft (fixed-wing aircraft, helicopter or
drone). The gravity disturbance is the difference between the magnitudes of the real gravity vector
and normal gravity vector. The normal gravity is defined for the ellipsoid model of the Earth [1].

A strapdown airborne gravimeter consists of a strapdown inertial navigation system or iner-
tial measurement unit (IMU), which includes high-precision inertial sensors (accelerometers and
gyroscopes) and geodetic-grade global navigation satellite system (GNSS) receivers (onboard and
ground-based). Raw gravimeter data includes measurements from the IMU inertial sensors and
GNSS receivers and are processed following the steps of a postprocessing scheme [2] (see also,
e.g., [3–5]):

(1) computing GNSS solutions (determining position, velocity, and accelerations of the aircraft
from raw GNSS measurements);

(2) computing integrated IMU/GNSS solutions (estimating the attitude of the gravimeter’s IMU,
the instrumental errors of the IMU inertial sensors, GNSS antenna offsets, etc.);

(3) computing gravimetric solution (determining the gravity disturbance along the flight trajec-
tory).

564
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In the first stage of the postprocessing scheme, GNSS solutions are calculated using code pseu-
dorange, Doppler pseudorange rate and carrier-phase measurements from dual-frequency receivers
accessing signals from one or several satellite constellations (GPS, GLONASS, GALILEO, BeiDou,
etc.) [4, 5]. The carrier-phase differential mode of data processing is typically used to reduce GNSS
measurement errors caused by ionospheric and tropospheric effects. Alternatively, the Precise Point
Positioning (PPP) technology, which does not require ground-based receivers (base stations), may
be used to obtain high-accuracy GNSS solutions [6]. The purpose of this postprocessing stage is
to calculate the aircraft’s velocity and/or accelerations with high accuracy, primarily using carrier
phase measurements and, less commonly, Doppler pseudorange rate measurements (see, e.g., [5, 7]).
Another approach is to use these two types of measurements simultaneously, with Doppler pseudo-
range rate measurements serving as auxiliary data in case of carrier phase measurement failures [4].

In the second stage of postprocessing (IMU/GNSS integration), the position, velocity and atti-
tude of the gravimeter’s IMU computed from the inertial sensor measurements are refined using the
GNSS solutions. The mathematical foundation of this task is the IMU error dynamics equations
expressed in the axes of the navigation (geodetic) frame (see, e.g., Section 5.2 in [1]). The vertical
channel is excluded from the equations, which removes gravity disturbance (as an unknown un-
knwn variable) from the equations. The influence of gravity disturbance on the horizontal channels,
expressed as the product of gravity disturbance and the horizontal attitude errors, is commonly
neglected as a second-order small quantity. Next, an optimal stochastic estimation problem is
formulated and solved using Kalman filtering and smoothing, which results in the state vector
estimates obtained at each point of the aircraft’s flight trajectory. In particular, the estimates of
the IMU attitude errors and the inertial sensor errors are obtained at this stage (for details, please
see [2]).

In this work, we focus on the third stage of postprocessing, which is solving the gravimetry
problem (determining gravity on the flight trajectory). The basic idea of solving the problem is to
form the difference between the IMU vertical channel data and GNSS data (kinematic acceleration
in the vertical direction). The problem is formulated as an optimal stochastic estimation problem
given a priori stochastic models of gravity disturbance, sensor measurement errors and GNSS data
errors. The solution to the estimation problem is provided by the Kalman filter and smoothing.
Traditionally, the GNSS acceleration errors are modeled as white noise [8, 9]. However, these errors
typically have a more complex structure and are correlated in time.

In this work, a refined stochastic model of the GNSS acceleration errors is introduced (for
the first time to our knowledge) under the assumption that GNSS accelerations are computed
using carrier phase measurements (Doppler pseudorange rates are not considered in the paper).
Namely, we assume that the kinematic accelerations are computed based on double differences of
GNSS carrier phase measurements (involving three successive time epochs) [10]. The refined model
of GNSS acceleration errors is defined in the time domain as the second central difference of a
discrete-time white noise process. The airborne gravimetry problem is then reduced to a linear
optimal stochastic estimation problem and solved in the Kalman filter framework. The results of
testing the proposed approach using real airborne gravimeter data are presented and discussed.
The results demonstrate a higher accuracy of gravity determination comparing to the traditional
approach based on the simplified GNSS acceleration error model (white noise).

2. MATHEMATICAL MODELS

2.1. Basic Equations

The following notation is used in this study:

• M is the proof mass of the accelerometer triad of the gravimeter’s IMU;
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• Mx is the geodetic frame with the origin at the point M and the axes pointing east, north,
and up along the normal to the reference ellipsoid (denoted as E,N,Up) [1];

• Mz is the IMU body frame with the axes z1, z2, z3 mutually perpendicular and aligned with
the sensitivity axes of the calibrated IMU accelerometers.

The mathematical foundation of the strapdown airborne gravimetry problem is the equation of
motion of the point M expressed in the geodetic frame Mx (for the expressions in other reference
frames see, e.g., [1]):

ax = −(Ωx + 2ux)× vx + g0
x + δgx + LT

zxfz, (1)

where vx,ax are the velocity and acceleration vectors (relative to the Earth) of the point M ,
respectively, expressed in the geodetic frame Mx; Ωx, ux are the angular velocity of Mx relative
to the Earth and the angular velocity of the Earth relative to the inertial space, respectively;
g0
x = (0, 0,−g0)T is the normal gravity vector at the point M [11]; δgx is the gravity disturbance

vector [1]; fz is the specific force at the point M expressed in the IMU body frame Mz; Lzx is the
transformation matrix from the geodetic frame Mx to the body frame Mz (an orthogonal matrix).

The vertical projection of (1) is given by the formula (the fundamental equation of airborne
scalar gravimetry):

aup = getv − g0 − δg + LT
3 fz, (2)

where aup is the relative vertical acceleration of the point M , getv is the Eötvös correction term
(the vertical projection of the inertial forces), g0 is the magnitude of the normal gravity vector
at the point M , δg is the magnitude of δgx (gravity disturbance), L3 is the third column of the
transformation matrix Lzx.

The gravimetric problem, as noted earlier, is solved at the final stage of the postprocessing
strategy and involves determining the gravity disturbance δg on the flight trajectory based on (2)
using raw accelerometer measurements, GNSS solutions (positions, velocities and accelerations),
and integrated IMU/GNSS solutions (estimates of the IMU attitude).

2.2. Measurement Models

In (2), only the specific force fz is measured directly (by the IMU accelerometers). The mea-
surement model is

f ′z = fz + qf , (3)

where f ′z is the vector of three accelerometer measurements and qf is the vector of measurement
errors.

The vertical kinematic acceleration of the aircraft is derived from raw (carrier phase) GNSS
measurements and can be expressed as

agpsup = aup + ea, (4)

where agpsup is the vertical acceleration computed from raw GNSS data and ea is the acceleration
error.

The Eötvös correction term getv is determined using the position and the horizontal components
of the velocity vector at the pointM [1]. The normal gravity g0 at the pointM is determined using
a theoretical model for the normal gravity at the ellipsoid (e.g., Helmert’s formula or Somigliana’s
formula) and the height correction term [11]. For computing the Eötvös correction term and normal
gravity, the GNSS position and velocity solutions (or the IMU/GNSS solutions) are used [4]. The
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lever-arm effect caused by the distance between the onboard GNSS antenna and the IMU should
be taken into account.

The estimate L̃3 of the third column L3 is also assumed to be known and computed from the
estimates of the IMU attitude angles (heading, roll and pitch) [12].

The computed vertical acceleration a′up is defined as

a′up = getv − g0 + L̃T
3 f

′
z. (5)

2.3. Fundamental Equation of Airborne Strapdown Gravimetry

Define the difference between the computed vertical acceleration and the true value as Δaup =
aup − a′up, which can be expressed using (2) and (5) in the following form:

Δaup = −δg + LT
3 fz − L̃T

3 f
′
z. (6)

The transformation matrix L̃zx is computed from the integrated IMU/GNSS solution, that is,
from the estimated (refined) IMU attitude angles (heading, roll, pitch), and is an orthogonal matrix.
The relationship between the true transformation matrix Lzx and the computed matrix L̃zx can be
written as

Lzx = (I + κ̂)L̃zx,

where κ̂ is a skew-symmetric matrix composed of components of the small rotation vector κ =
(kE , kN , kUp)

T. The vector κ characterizes the residual attitude error, that is, the errors in the
IMU attitude estimates obtained at the IMU/GNSS integration stage. Here, kE , kN are the residual
attitude errors in the east and north directions, respectively, and kUp is the error of the azimuthal
error estimate.

The right-hand side of (6) can be rewritten using (3) as:

LT
3 fz − L̃T

3 f
′
z = (LT

3 − L̃T
3 )f

′
z − L̃T

3 qf = −kEf ′N + kNf
′
E − L̃T

3 qf , (7)

where f ′E = L̃T
1 f

′
z, f

′
N = L̃T

2 f
′
z are the horizontal projections of the accelerometer measurements in

the east and north directions, respectively, and L̃1, L̃2 are the first two columns of the transformation
matrix L̃zx.

Using the GNSS-derived vertical acceleration (4), the measurement of Δaup can be formed as

y := agpsup − a′up = Δaup + ea, (8)

where ea is the error of the GNSS-derived acceleration.

Substituting (7) and (6) into (8), we finally obtain the basic equation of airborne strapdown
gravimetry in the form containing measurements and measurement errors:

y = −δg − kEf
′
N + kNf

′
E − L̃T

3 qf + ea. (9)

Other systematic errors, such as GNSS antenna offsets or time-synchronization errors between
the IMU and GNSS data [2], may also be included in (9). However, for simplicity, these errors are
not considered here.

Equation (9) is considered over the flight time interval [t0, tn]. All measurements in (9) (y, f ′E,
f ′N , and L̃3) are assumed to be resampled at the GNSS data rate. Let ti be a time stamp of GNSS
data (i = 0, . . . , n) and Δt the time step. The remaining variables in (9) (δg, kE , kN , qf , and ea)
are treated as unknown functions of time, for which a priori models are introduced below.
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3. FORMULATION OF THE OPTIMAL ESTIMATION PROBLEM

Problem (9) is reduced to optimal stochastic estimation. A priori stochastic models are intro-
duced for gravity disturbance δg, residual attitude errors kE , kN and GNSS vertical acceleration
error ea. The measurement errors of three accelerometers qf are modeled as a modeled as stochas-
tic processes, namely, as discrete-time white noises with zero mean and variance σ2f (it is assumed
here that all three accelerometers have the same accuracy).

3.1. Stochastic Models of Gravity Disturbance and IMU Systematic Errors

In airborne gravimetry, it is usually assumed that gravity (as a function of flight time) is a
slowly-varying function (with the spectrum mostly concentrated at low frequencies) [13]. An a
priori stochastic model of gravity as a stationary random process in time is typically introduced.
The models commonly used in airborne gravimetry algorithms are Gauss–Markov models (typi-
cally of order two or three) [14, 15], integrals of a white noise [3, 4, 13], and Jordan’s model [16].
Deterministic spatial models are also occasionally used in airborne gravimetry [17, 18]. A detailed
comparison of all these models is beyond the scope of this paper, but a partial comparison can be
found in [15] (Section 5.2) and [14, 15, 17, 18]. For instance, [15] notes that using the Gauss–Markov
models of different orders yields similar results in airborne gravimetry as when using the integrals
of a white noise.

In this work, gravity disturbance is modeled as the second integral of a white-noise process. The
model takes into account the long-wavelength nature of gravity, agrees well with real gravimetric
data in many areas [13] and is defined by a simple equation in the time domain: δg̈ = qg, where
qg is a white noise. The power spectral density (PSD) of the gravity model is:

Sg(ω) =
σ2

2πω4
, (10)

where ω is the angular frequency and σ2 is the intensity of white noise.

Let us write the equations of the gravity model in discrete time denoting with the subscript i
the value at the time moment ti: {

δgi+1 = δgi +Δt pi,

pi+1 = pi + qg,i,
(11)

where qg,i is a discrete-time white noise with zero mean and variance σ2g .

Further, we introduce the stochastic models for the residual attitude errors kE , kN in east and
north directions. Recall that the IMU attitude errors are estimated at the IMU/GNSS integration
stage. The horizontal attitude errors contain the so-called Schueler oscillations [12] and in absolute
value typically do not exceed 0.5 arcmin when using a state-of-the-art IMU [2]. The residual
attitude errors kE , kN do not contain the Schueler oscillations, are typically less than 10 arcsec in
absolute value and can be modeled as slowly varying functions of flight time [2, 4].

Based on the above, we introduce the models of kE, kN as integrals of white noise: k̇E = qE,
k̇N = qN , or in discrete time as: {

kE,i+1 = kE,i + qE,i,

kN,i+1 = kN,i + qN,i,
(12)

where qE,i, qN,i are discrete-time white noises with zero mean and variances σ2E , σ
2
N , respectively.
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3.2. Refined Model of Kinematic Acceleration Error

Traditionally, in airborne gravimetry algorithms the error in GNSS-derived accelerations is as-
sumed to be a white noise. In this work, a refined model of the acceleration error is introduced
taking into account the specifics of the acceleration computation method. Namely, we assume that
the kinematic accelerations are computed based on numerical differentiation of carrier phase mea-
surements (by forming double differences of measurements using three successive epochs ti−1, ti,
ti+1) [10]. Taking this into account, we introduce the refined model of GNSS acceleration error in
the following form:

ea,i =
qa,i+1 − 2qa,i + qa,i−1

Δt2
, (13)

where qa,i is a discrete-time white noise with zero mean and variance σ2a.

The autocorrelation function of the process ea,i denoted by Ke(m) (m is an integer) takes the
following values:

Ke(0) =
6σ2a
Δt4

, Ke(±1) = − 4σ2a
Δt4

, Ke(±2) =
σ2a
Δt4

,

and zero for other m.

The PSD of the process ea,i is given by (assuming Δt = 1 for simplicity):

Se(e
jω) =

1

2π

∞∑
m=−∞

Ke(m) e−jωm =
2σ2a
π

(1− cosω)2, (14)

where j is the imaginary unit.

Figure 1 shows the PSD of the refined error model (13)–(14) and PSD of real kinematic accel-
erations from a static test (the GNSS receiver from JAVAD with the sampling rate of 10 Hz was
used). The recording was made while the aircraft was at the parking position at the airport (see

Fig. 1. Power spectral densities of GNSS carrier-phase acceleration errors (real data; solid line)
and of theoretical models of GNSS acceleration errors: refined model (dotted line) and traditional
simplistic model (dashed line), (m2/s4)/Hz.
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Section 4 for details). The raw GNSS data processing (acceleration computation) was performed
using the software developed by Lomonosov Moscow State University [10]. Since the PSD of the
refined model (14) is proportional to ω4 at low frequencies, its plot is shown in Fig. 1 as a straight
line (in a logarithmic scale).

In Fig. 1, the PSD of the simplified GNSS acceleration error model (white noise), which is
traditionally used in airborne gravimetry algorithms, is also shown. From Fig. 1, it follows that the
refined model matches the real data significantly better, both in the high-frequency domain and
near the cutoff frequency of the gravimetric filter [1], that is, in the range of 0.01–0.1 Hz, than the
simplified model.

Further, a state-space representation of the refined model (13) will be required. Let us introduce
auxiliary variables ξi, ηi: {

ηi+1 = ξi,

ξi+1 = qξ,i,
(15)

where qξ,i := qa,i+1. Rewriting the model (13) using the auxiliary variables, we obtain:

ea,i =
ηi − 2ξi + qξ,i

Δt2
. (16)

3.3. Problem Statement and Estimation Algorithm

Let us combine the basic equation of airborne gravimetry (9), the stochastic models of the gravity
disturbance (11), the residual attitude errors (12) and the refined model of GNSS acceleration error
(15)–(16) into one state-space system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kE,i+1 = kE,i + qE,i,

kN,i+1 = kN,i + qN,i,

δgi+1 = δgi +Δt pi,

pi+1 = pi + qg,i,

ηi+1 = ξi,

ξi+1 = qξ,i,

yi = −δgi − kE,if
′
N,i + kN,if

′
E,i +

1

Δt2
(ηi − 2ξi + qξ,i)− L̃T

3,iqf,i.

(17)

The state-space system can be written in matrix form:{
xi+1 = Aixi +Biqi,

yi = Cixi + ri,
(18)

where the state vector xi has the following form

xi = (kE,i, kN,i, δgi, pi, ηi, ξi)
T ∈ R

6. (19)

The vector qi is the system noise vector:

qi = (qE,i, qN,i, qg,i, qξ,i)
T ∈ R

4. (20)

The scalar ri is the measurement noise:

ri =
1

Δt2
qξ,i − L̃T

3,iqf,i. (21)
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The matrices Ai, Bi, Ci in (18) consist of the coefficients at the unknown variables and noises
in (17) and have dimensions 6× 6, 6× 4 and 1× 6, respectively.

The covariance matrix of the system noise vector (20) E[qiq
T
i ] is a diagonal 4× 4-matrix whose

diagonal elements are the variances of the components of qi. The variance of the measurement
noise ri (white noise) is easily computed from (21) and is given by the formula

E[r2i ] =
σ2ξ
Δt4

+ σ2f ,

where we use the fact that L̃3,i is a column of an orthogonal matrix.

The processes ri and qi are cross-correlated and their cross-covariance matrix is given by the
expression:

E[riq
T
i ] =

1

Δt2
(0, 0, 0, σ2ξ ).

Under the above assumptions, we now can formulate the optimal estimation problem (in the
mean-square error sense) for the state vector xi at each time instant given the state-space sys-
tem (18) and measurements yi, i = 0, . . . , n. We assume that the estimate of the state vector at
the initial time moment x0 is 0 and the initial covariance matrix E[x0x

T
0 ] is given. The optimal

estimation algorithm is the Kalman filter and smoothing [13].

3.4. Theoretical Analysis of Gravity Estimation Accuracy

Let us determine the gravity estimation accuracy when using the proposed approach (based on
the refined model of kinematic acceleration error). For this, we derive an approximate expression
for the transfer function of the optimal filter, which maps the measurement y (9) to the gravity
disturbance estimate (the so-called gravimetric filter).

First, we reduce equation (9) to stationary form by neglecting the systematic errors kE , kN and
accelerometer measurement noise qf . The gravity disturbance δg and GNSS acceleration error ea
are assumed here to be continuous-time stationary processes with given PSDs (10) and (14), respec-
tively. Then the optimal (in the mean-square error sense) linear estimate of gravity is determined
by a smoothing filter that is given in the frequency domain by the expression (the Wiener filter) [19]

W1(ω) = Sg(ω) (Sg(ω) + Se(ω))
−1 =

⎛⎝1 +

(
σa
σg

)2

ω8

⎞⎠−1

. (22)

In deriving (22), we used expression (14) in an approximate form as σ2
a

2πω
4 for small ω.

Thus, the gravimetric filter based on the refined GNSS acceleration error model (14) approxi-
mately corresponds to the two-pass Butterworth filter of order 4 (Fig. 2a). In Fig. 2a, also shown is
the gravimetric filter W2(ω) constructed using the simplified GNSS acceleration error model (white
noise with intensity σ2q ) and the same model for gravity:

W2(ω) =

⎛⎝1 +

(
σq
σg

)2

ω4

⎞⎠−1

. (23)

The transfer function (23) corresponds to the two-pass Butterworth filter of order 2.

Let us determine the accuracy of gravity estimation using the constructed filters as the PSD of
the estimate error, provided that the true PSD of gravity coincides with the a priori model (10)
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Fig. 2. (a) Transfer functions of the gravimetric filters in the new approach (based on the refined model of
GNSS acceleration error) and in the common approach (based on a simplistic model of the GNSS acceleration
error). (b) Power spectral densities of the errors in gravity estimates provided by the gravimetric filters,
mGal2/Hz (1 mGal = 10−5 m/s2).

and the true PSD of the GNSS acceleration error coincides with the model (14). Then the PSD of
the error of the gravity estimate provided by the gravimetric filter W1(ω) is determined as

Sδg(ω) = Sg(ω)Se(ω) (Sg(ω) + Se(ω))
−1 =

σ2aω
4

2π

⎛⎝1 +

(
σa
σg

)2

ω8

⎞⎠−1

. (24)

The PSD of the error of gravity estimate obtained using the gravimetric filter W2(ω) is determined
by:

Sδg(ω) = |1−W2(ω)|2Sg(ω) + |W2(ω)|2Se(ω)

=
σ2aω

4

2π

(
1 +

σ4q
σ2gσ

2
a

)⎛⎝1 +

(
σq
σg

)2

ω4

⎞⎠−2

. (25)

The plots of PSDs (24)–(25) are shown in Fig. 2b. The figure shows that when using the filter
based on the refined GNSS acceleration error model, the PSD of the gravity estimation error is
smaller than when using the filter based on the simplified acceleration error model.

4. NUMERICAL RESULTS

To test the developed gravity estimation algorithm (Section 3.3), we used data from a state-of-
the-art strapdown airborne gravimeter (iCORUS by iMAR) recorded on December 17, 2022 during
a flight of an airborne gravity campaign. The gravimeter was flown along ten repeated lines (i.e.,
above the same ground track) during this flight (Fig. 3). The repeated lines are oriented in the
east-west and west-east directions. The length of each line is about 110 km. The flight was carried
out using a Cessna 208B aircraft at a constant altitude of 760 m above the reference ellipsoid. The
average aircraft speed along survey lines was 70 m/s. The total flight duration is 7 hours. The
gravimetry campaign was conducted by Aerogeophysica JSC (Russia) in the Krasnoyarsk Krai.

The gravimeter data included raw measurements from the IMU inertial sensors (at the data
rate of 400 Hz) and raw measurements from the onboard and ground-based GNSS (GPS) receivers
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Fig. 3. Flight trajectory on the longitude-latitude plane (GNSS data).

Fig. 4. Vertical kinematic accelerations from GNSS carrier-phase measurements, m/s2.

from JAVAD (at 10 Hz). Preliminary stages of raw data postprocessing were performed using the
software developed by the Faculty of Mechanics and Mathematics at Lomonosov Moscow State
University [2] (software packages INS-GNSS and IMU-GRAV [20, 21]). Namely, the following tasks
were solved at the initial stage:

1) computing the GNSS solutions (in the carrier phase differential mode), which included cal-
culation of

• position (latitude, longitude and height above the reference ellipsoid) of the antenna of the
onboard GNSS receiver;

• velocity (east, north and vertical components) of the onboard receiver;
• kinematic accelerations (east, north and vertical components) of the onboard receiver;
2) computing integrated IMU/GNSS solutions, which included estimation of
• IMU attitude angles (heading, roll and pitch);
• systematic errors of the IMU inertial sensors.

The vertical kinematic accelerations calculated from the carrier phase measurements using the
algorithm from [10] are shown in Fig. 4.

The gravity estimate along the flight trajectory was computed using the proposed algorithm
based on the refined GNSS acceleration error model. The gravity estimation accuracy was deter-
mined based on the statistics from ten repeated flight lines. The root-mean-square (RMS) value
is 0.706 mGal. The gravity estimates at the repeated lines are shown in Fig. 5.

For comparison, another estimate of the gravity disturbance was obtained using the standard
approach, which is based on the simplified GNSS acceleration error model (white noise). The same
stochastic models were used for the residual attitude errors kE , kN , accelerometer measurement
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Fig. 5. Gravity disturbance estimates at the repeated lines provided by the new algorithm based on the refined
model of GNSS acceleration error, mGal.

Fig. 6. Difference between the gravity disturbance estimates obtained in the new and standard approaches,
mGal.

noise qf and gravity disturbance in (9) as in the proposed approach. The estimation algorithm in
the standard approach is the Kalman filter and smoothing. As shown above, the transfer function
of the gravimetric filter in the standard approach is close to the 2nd-order two-pass Butterworth
filter (Fig. 2a). The accuracy of the gravity estimates obtained in the standard approach was
also determined based on the statistics from ten repeated lines and is 0.749 mGal (RMS). This
demonstrates a slightly worse repeatability of the gravity estimates compared to the results from
the proposed approach (based on the refined GNSS acceleration error model).

In Fig. 6, the difference between the gravity estimates computed by the proposed and standard
approaches is shown. The standard deviation of the difference is 0.764 mGal, which is quite
significant. We attribute this discrepancy to the gravity estimation error introduced by the standard
approach as it showed worse repeatability of the gravity estimates at the repeated lines.

The absolute values of the difference between the gravity estimates provided by the two ap-
proaches reach 2.5 mGal, with maxima occurring during the aircraft turns (each lasting from 5
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to 8 minutes) between the repeated lines (visible as spikes in Fig. 6). This can probably be ex-
plained by the fact that during aircraft turns, GNSS acceleration errors have a wider frequency
range and are more effectively suppressed by the gravimetric filter of the proposed approach, which
has a steeper roll-off near the cutoff frequency (Fig. 2a).

5. CONCLUSIONS

The gravity estimation algorithm based on the refined model of errors in the kinematic acceler-
ations computed from the GNSS carrier phase measurements has been proposed. The refined error
model takes into account the specificity of the method that was used for computing the kinematic
accelerations and is defined in the time domain as the second central difference of a discrete-time
white noise process.

The proposed approach was compared with the standard one, which uses a simplified GNSS
acceleration error model (white noise). The approaches were compared based on processing raw
data from a strapdown gravimetry flight (ten repeated lines). The results show a higher accuracy
of the gravity estimates provided by the proposed approach, which is 0.71 mGal (RMS), while
the standard approach showed the 0.75 mGal accuracy. The difference between the gravity esti-
mates obtained by the two approaches reaches 2.5 mGal and is attributed to the estimation errors
introduced by the standard approach.

Based on the obtained test results, we conclude that the proposed approach seems promis-
ing for implementing in postprocessing software packages of state-of-the-art strapdown airborne
gravimeters.
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Géodésique, 1994, vol. 69, pp. 1–11.

15. Becker, D., Advanced Calibration Methods for Strapdown Airborne Gravimetry, Ph.D. Thesis, Technische
Universität Darmstadt, Darmstadt, Germany, 2016.

16. Stepanov, O.A., Koshaev, D.A., and Motorin, A.V., Identification of Gravity Anomaly Model Parameters
in Airborne Gravimetry Problems Using Nonlinear Filtering Methods, Gyroscopy Navig., 2015, vol. 6,
pp. 318–323.

17. Vyazmin, V.S., New Algorithm for Gravity Vector Estimation from Airborne Data Using Spherical
Scaling Functions, International Association of Geodesy Symposia, Springer, Berlin, Heidelberg, 2020,
pp. 1–7.

18. Vyazmin, V.S., Bolotin, Yu.V., and Smirnov, A.O., Improving Gravity Estimation Accuracy for the
GT-2A Airborne Gravimeter Using Spline-Based Gravity Models, International Association of Geodesy
Symposia, Springer, Berlin, Heidelberg, 2020, pp. 1–8.

19. Kailath, T., Sayed, A.H., and Hassibi, B., Linear Estimation, Prentice Hall, Englewood Cliffs, 2000.

20. Certificate of State Registration of Software Program no. 2023668582, Russian Federation, Program
for Calculating an Integrated Navigation Solution Based on Strapdown Airborne Gravimeter Data,
Registered on 08.22.2023, Authors: Golovan, A.A. and Vyazmin, V.S.

21. Certificate of State Registration of Software Program no. 2024680457, Russian Federation, Program
for Calculating Gravity Disturbance Estimate Based on Inertial and Satellite Navigation Data from a
Strapdown Airborne Gravimeter, Registered on 08.08.2024, Author: Vyazmin, V.S.

This paper was recommended for publication by A.A. Galyaev, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2025, Vol. 86, No. 6, pp. 577–588.
c© The Author(s), 2025 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2025.
Russian Text c© The Author(s), 2025, published in Avtomatika i Telemekhanika, 2025, No. 6, pp. 102–117.

CONTROL IN SOCIAL ECONOMIC SYSTEMS

Informational Control of Strategies

in an n-Player Oligopoly Game

with Reflexive Behavior

M. I. Geraskin
Samara University, Samara, Russia

e-mail: innovation@ssau.ru

Received November 29, 2024

Revised March 21, 2025

Accepted March 25, 2025

Abstract—This paper is devoted to an n-player oligopoly game with quantity competition under
general demand and cost functions. Players are assumed to be reflexive: each player conjectures
about the strategies of all other players. As a result, the subsets of players with different
Stackelberg leadership levels are formed in this game (a game with multilevel leadership). The
reflexion of players is formalized by conjectural variations, i.e., players’ expectations regarding
the impact of their actions on the counterparty’s action. The problem of controlling the strategy
of one player (the controlled player) by the other (n− 1) players (the Principal) is investigated,
and an optimal Nash equilibrium is established in terms of the Principal’s utility criterion.
A hierarchical game model of players’ interactions is proposed, and the dependence of the
maximum of the Principal’s utility function on the vector of the sums of conjectural variations
(SCV) of all players is found within this model. The dependence is used to calculate the
controlled player’s SCV value optimizing the Principal’s utility function. An informational
control method is developed, enabling the Principal to induce the controlled player to choose
the reaction function optimal from the former’s standpoint.

Keywords : oligopoly, conjectural variation, Stackelberg leadership, hierarchical game
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1. INTRODUCTION

The oligopoly game is an aggregative game [1], i.e., one where each player’s payoff depends on
the sum (aggregate) of the actions of all players. The solution of this game is the Cournot–Nash
equilibrium [2, 3]. Based on a conjectural variation, H. Stackelberg was the first to define the
leader’s strategy in the game as opposed to the follower’s strategy [4].

The prerequisite for the concept of a conjectural variation in an aggregative game was the
comprehension that, when choosing their optimal actions, players will inevitably expect the optimal
behavior of their rivals (i.e., they will perform reflexion). Consequently, the conjectural variation
is a mathematical formalization of the mental process of reflexion [5], in this case being interpreted
as a thought operation executed by some player to calculate the optimal reaction (best response)
of another player to the former’s action. As a rule, a quantity conjectural variation is considered,
which characterizes the player’s expected reciprocal change in the counterparty’s action (supply
quantity), optimizing the latter’s utility function under the action chosen by the former. In modern
research, the conjectural variation is widely used to analyze Stackelberg leadership in two directions
as follows. First, an increase in the number of reflexive players leads to the emergence of multiple
Stackelberg leaders in the game [6]. Second, deeper reflexion causes the emergence of higher-level
leaders (multilevel leadership) [7]. The second aspect is expressed in the hierarchy of players’
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conjectures, bringing to the following hierarchy of their mental types: 1) a follower, who makes no
conjectures regarding the strategies of the environment (its conjectural variation is therefore zero);
2) a (first-level) Stackelberg leader, who expects followers in the environment; 3) a second-level
(or higher-level) Stackelberg leader, who expects first-level (or other lower-level) Stackelberg leaders
in the environment. The hierarchy of mental types determines the reflexion rank of player r as the
number in the described sequence of mental types. Note that the above hierarchy is constructed
only in the players’ beliefs (in this case, we have a game with phantom players); in fact, however,
there is a nonhierarchical game with equal players, investigated in most studies of the oligopoly
problem. As an exception, a hierarchical aggregative game with Principal’s control was considered
in [8] as an incentive problem with players (universities) institutionally dependent on the Principal
(the government).

Given the above stratification of leaders, depending on the awareness of each player, players of
different mental types can coexist in an oligopoly game, and a player of a definite mental type will
choose a predictable action according to its conjectural variation. Therefore, it becomes possible
to change, in a purposeful way, some player’s action by forming a definite information field for
him/her. This possibility leads to the well-known concept of informational control. The idea of
informational control [9–11] is based on the formation of a purposeful sequence of opinions in a social
group depending on the opinions of the so-called influence agents. Formally speaking, informational
control is intended to induce purposefully the desired way of thinking, set by a control authority,
for one or several players.

In the context of oligopoly games, the concept of informational control is constructed as follows.
Consider a group consisting of n− 1 players, further denoted by the symbol j. Let this group strive
to achieve a favorable action of a non-group player i. To do so, the group performs actions from
which player i concludes on some reflexion rank r of the group. Therefore, for player i, the optimal
reflexion rank is r + 1, which corresponds to definite values of its conjectural variations; in turn,
they predetermine the desired action of this player for the group. For a particular realization of
such a control process, it is necessary to find the sum of conjectural variations (SCV) of player i
that are optimal (consistent) from the group’s standpoint and then determine the dependences of
the equilibrium actions of all players on the parameters of their mental type.

In this paper, we consider a procedure for calculating the optimal SCV value of a certain player
in terms of the environment’s utility criterion, a method for estimating the player’s mental type
corresponding to this SCV value or its reaction function, and an algorithm for calculating the
group’s actions inducing the required player’s response.

2. THE BASIC OLIGOPOLY GAME MODEL

The game-theoretic model describes the interactions of n players representing firms in an oligopoly
market. By a traditional assumption [6], these firms offer an identical product to the market with
a common decreasing inverse demand function; in the case of quantity competition, they choose
actions in the form of supply quantities. Players are rational, i.e., maximize individual action-
concave utility functions πi(Q,Qi) = P (Q)Qi − Ci(Qi); in addition, they are informed about the
utility functions of the environment and choose their actions simultaneously, once, and indepen-
dently. Then the basic model of player’s action choice is described by

max
Qi�0

πi(Q,Qi) = max
Qi�0

[P (Q)Qi − Ci(Qi)] , i ∈ N = {1, . . . , n}, (1)

Q =
∑
i∈N

Qi, (2)
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where Qi and πi denote the action and utility function of player i; Q is the aggregate of actions
(the total action of all players); N stands for the set of players; n is the number of players; P (Q)
is the inverse demand function, P ′

Q < 0; finally, Ci(Qi) is the cost function of player i, C ′
Qi
> 0.

For a known vector of conjectural variations, the Nash equilibrium in the game Γ= 〈N,{Qi, i∈N},
{πi, i ∈ N}〉 is determined by solving the following system of reaction equations:

∂πi(Q
∗
i , ρij)

∂Qi
= 0, i, j ∈ N, (3)

where ρij = Q′
jQi

is the quantity conjectural variation of player i, i.e., its expectation regarding
the supply quantity change of player j in response to the unit increase in the supply quantity of
player i; Q∗

i is the equilibrium value.

The optimal conjectural variation (also called consistent in the literature) is calculated from
equation (3) of player j, i.e., this variation corresponds to its best response. For the utility func-
tion (1), system (3) takes the form

P (Q) + (1 + Sr
i )QiP

′
Q − C ′

iQi
= 0, i ∈ N, Sr

i =
∑

j∈N\i
ρrij , (4)

where Sr
i is the SCV value of player i at a reflexion rank r.

In the case of action-independent conjectural variations (ρ′ijQi
= 0), SCV values at an arbitrary

reflexion rank are given by the recurrent formula [7]

Sr
i =

⎛⎜⎜⎜⎝ 1∑
j∈N\i

1

uj − Sr−1
j + 1

− 1

⎞⎟⎟⎟⎠
−1

, (5)

where ui = −1 +
P ′
Qi

+(1+Sr−1
i )QiP

′′
QQi

−C′′
iQiQi

|P ′
Q
|

is a nonlinearity coefficient expressing the influence of

the nonlinearity of the demand and cost functions on the unimodality of the utility function of
player i.

Due to (4), the Nash equilibrium vector Q∗ = {Q∗
i , i ∈ N} in the n-player oligopoly game de-

pends on the SCV vector Sr = {Sr
i , i ∈ N} (the conjectural variations of all players). Therefore,

an inverse dependence also exists: given a known action vector Q∗ = {Q∗
i , i ∈ N}, it is possible

to establish a vector Sr = {Sr
i , i ∈ N} inducing these actions of the players. On this basis, let us

consider some tools for controlling (manipulating) the player’s behavior by the environment.

3. AN OPTIMAL CONTROL MODEL FOR PLAYER’S BEHAVIOR

Consider the following modification of the basic oligopoly game model in the form of a hierarchi-
cal game. Player i is the controlled object, and its environment (i.e., the other players) acts as the
control subject, also called the Principal. Thus, we study a hierarchical game of the Principal–agent
type (Fig. 1). For the sake of simplicity, the environment of player i will be assigned number j (i.e.,
j = {N\i}). The environment has a common goal: induce player i to choose an optimal action Qi

in terms of the former’s utility functions. Therefore, let us define the Principal’s goal function as
the vector of the utility functions of the environment players. Since the latter are supposed to be
identical, the goal function can be represented as a single function of the form

π(i) = πj, j ∈ {1, . . . , i− 1, i+ 1, . . . , n},

and briefly written as
π = π(i).
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Fig. 1. The diagram of a hierarchical game.

Now we describe the main assumptions adopted in the hierarchical game analysis.

1) The utility functions of all environment players are identical, i.e., these players have the same
cost functions with the same coefficient:

Cj(Qj) = Ck(Qk), πj(Qj) = πk(Qk)∀j, k = {N\i}.

2) The awareness of the players is described by the following awareness sets Ii and Ij :

— The awareness set of the controlled player includes the set of players and the actions and
utility functions of all players:

Ii = {N,Qk, πk, k ∈ N}.

— The awareness set of the environment encompasses the set of players, the actions and utility
functions of all players, the SCV values of the environment players, and the Principal’s goal function:

Ij = {N,Qk, πk, Sj , π, j ∈ N\i, k ∈ N},

where π = πj, j ∈ N\i, is the goal function of the environment (Principal), identical to the utility
functions of the environment players.

3) All players calculate their conjectural variations based on the sets Ii and Ij . These variations
may be optimal (i.e., consistent with the utility functions of the players) or be determined by the
players using the actions of the other players. If players’ actions are inconsistent with their utility
functions, the players are action-oriented. At each time instant of the game, either the SCV of the
controlled player or the SCV of the environment has a constant value:

Si = const ∨ Sj = const,

since to change the SCV, players estimate the actions of the other players at the previous time
instant.

The environment controls the behavior of player i through its reflexion in the following procedure:

— The environment calculates the target SCV value Si of player i that is optimal in terms of
the former’s utility functions:

Si = argmax
Si

πj(Q(Si), Qj(Si)).

— The environment performs actions Qj that will induce player i to choose the SCV value Si

and, consequently, the optimal action Qi from the environment’s standpoint.
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The second stage of the above behavior control procedure explains the meaning of Assumption 3
in the context of the players’ dual approach to estimating the conjectural variations. The environ-
ment controls player i by performing the actions Qj determined not from the maximum of its utility

function but from the condition of inducing this player to choose Si; therefore, having predicted
the SCV values from the environment’s utility functions, player i will arrive at a contradiction.
Consequently, the player in this contradiction will favor the method for estimating the SCV val-
ues by the environment’s actions. Therefore, two alternatives are considered when estimating the
SCV values: if the players’ actions are consistent with their utility functions, the other players will
estimate the optimal SCV values; if the SCV values found by the players’ actions do not coincide
with the SCV values based on the utility functions, the first estimation method as more realistic
will be given priority.

4. METHODS FOR CALCULATING OPTIMAL CONTROL

The behavioral control of player i is based on the dependence of each player’s utility function on
the SCV values of all players, see system (4). Therefore, we first derive a formula for the maximum
of the environment’s utility function depending on the SCV vector of all players.

Proposition 1. The maximum value of the environment’s utility function is given by

π∗j (S
r) = P [Q∗(Sr)]Q∗

j(S
r)−

Q∗
j (S

r)∫
0

[
P (Q∗) + (1 + Sr

j )Q
∗
jP

′
Q

]
dQj + Cj(0), (6)

where Sr = {Sr
k, k ∈ N} denotes the SCV vector.

Proof of Proposition 1. Let us express the marginal cost from equation (4), written for the
environment:

C ′
jQj

= P (Q∗) + (1 + Sr
j )Q

∗
jP

′
Q.

Integration over Qj yields

Cj(Q
∗
j ) =

Q∗
j∫

0

C ′
jQj
dQj +Cj(0) =

Q∗
j∫

0

[
P (Q∗) + (1 + Sr

j )Q
∗
jP

′
Q

]
dQj + Cj(0);

after substitution into the environment’s utility function, we obtain

π∗j =P (Q∗)Q∗
j − Cj(Q

∗
j ) =P (Q∗)Q∗

j −
Q∗

j∫
0

[
P (Q∗)+(1+Sr

j )Q
∗
jP

′
Q

]
dQj+Cj(0),

where Cj(0) is fixed costs. Note that in this formula, the equilibrium action of player i, Q∗
j , the

equilibrium price P (Q∗), and the equilibrium aggregate action Q∗ are all functions of the SCV
Sr = {Sr

i , i ∈ N}. Thus, the maximum utility of the environment also depends on this vector,
which finally implies (6). �

Let us express the SCV of player i that is optimal in terms of the environment’s utility criterion:

Si = argmax
Si

π∗j (S
r).

Proposition 2. The optimal SCV value Si of the controlled player, in terms of the environment’s
utility function, is calculated from the equation

2(1 + Sr
j )Q

∗
jQ

∗′
jSi
P ′
Q +

(
(1 + Sr

j )P
′′
QSi

+ P ′
Q

∂Sr
j

∂Si

)
Q∗2

j = 0 (7)
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under the condition

2
∂Sr

j

∂Si
Q∗′

jSi
+ (1 + Sr

j )Q
∗′
jSi

< 0, (7a)

in the case of a weak impact of the SCV change on the equilibrium shift and a relatively small value
of the second derivative of the environment’s SCV with respect to the player’s SCV compared to the
first derivative.

Proof of Proposition 2.

With the Leibniz integral rule (differentiation under the integral sign) applied to the second
term in (6), where the integration limits are functions of the parameter Si, we write the necessary
first-order maximum condition for the function (6):

π∗
′

jSi
=P ′

Si
Q∗

j +PQ
∗′
jSi

−
{[
P+(1+Sr

j )Q
∗
jP

′
Q

]
Q∗′

jSi
+

Q∗
j∫

0

[
P (Q∗)+ (1+Sr

j )Q
∗
jP

′
Q

]′
Si

dQj

}
= 0. (7b)

The integral in this equation can be transformed as follows:

I =

Q∗
j∫

0

[
P + (1 + Sr

j )Q
∗
jP

′
Q

]′
Si

dQj =

Q∗
j∫

0

[
P ′
Si

+ (1 + Sr
j )(Q

∗′
jSi
P ′
Q +Q∗

jP
′′
QSi

) +Q∗
jP

′
Q

∂Sr
j

∂Si

]
dQj .

In the integrand, the parameters Q∗
j , Q

∗, Q∗′
jSi
, P ′

Si
(Q∗), and P ′

Q(Q
∗) characterize the equilibrium

of all players, therefore being independent of the action Qj of player j; the parameter Sr
j and

hence
∂Sr

j

∂Si
weakly depend on the action Qj (see the proof in [7]). Therefore, the following variables

are considered to be independent of Qj:

Q∗
j , Q

∗, P ′
Si
, P ′

Q,
∂Sr

j

∂Si
, Q∗′

jSi
, Sr

j .

In this case, the integral becomes

I = (P ′
Si

+ (1 + Sr
j )Q

∗′
jSi
P ′
Q)Q

∗
j +

(
(1 + Sr

j )P
′′
QSi

+ P ′
Q

∂Sr
j

∂Si

)
Q∗2

j .

Substituting it into (7a) gives the expression

π∗
′

jSi
= P ′

Si
Q∗

j + PQ∗′
jSi

−
[
P + (1 + Sr

j )Q
∗
jP

′
Q

]
Q∗′

jSi
− (P ′

Si
+ (1 + Sr

j )Q
∗′
jSi
P ′
Q)Q

∗
j

−
(
(1 + Sr

j )P
′′
QSi

+ P ′
Q

∂Sr
j

∂Si

)
Q∗2

j = −2(1 + Sr
j )Q

∗
jQ

∗′
jSi
P ′
Q −

(
(1 + Sr

j )P
′′
QSi

+ P ′
Q

∂Sr
j

∂Si

)
Q∗2

j .

Then equation (7b), used to calculate the optimal SCV value of player i in terms of the envi-
ronment’s utility criterion, takes the form (7).

The second-order maximum condition for the function (6) is given by

π∗
′′

jSiSi
=−

{
2
∂Sr

j

∂Si
Q∗

jQ
∗′
jSi
P ′
Q + 2(1 + Sr

j )
[
Q∗

jQ
∗′′
jSiSi

P ′
Q +Q∗

j(Q
∗′′
jSiSi

P ′
Q +Q∗′

jSi
P ′′
QSi

)
]

+
∂Sr

j

∂Si
P ′′
QSi

Q∗2
j + (1 + Sr

j )(P
′′′
QSiSi

Q∗2
j + 2Q∗

jQ
∗′
jSi
P ′′
QSi

)

+ P ′′
QSi

∂Sr
j

∂Si
Q∗2

j + P ′
Q

(
∂2Sr

j

∂S2
i

Q∗2
j + 2Q∗

jQ
∗′
jSi

∂Sr
j

∂Si

)}
< 0.
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After straightforward transformations, we obtain

∂Sr
j

∂Si
Q∗

j (2P
′′
QSi

Q∗
j + 4Q∗′

jSi
P ′
Q)

+ (1 + Sr
j )
(
2(Q∗′

jSi
)2P ′

Q + 2Q∗
jQ

∗′′
jSiSi

P ′
Q + P ′′′

QSiSi
Q∗2

j + 4Q∗
jQ

∗′
jSi
P ′′
QSi

)
+ P ′

Q

∂2Sr
j

∂S2
i

Q∗2
j > 0.

Due to the assumption of a weak influence of the SCV change on the equilibrium shift,

P ′′
QSi

= 0, P ′′′
QSiSi

= 0, Q∗′′
jSiSi

= 0.

Due to the assumption of a small value of the second derivative of the environment’s SCV with
respect to the player’s SCV compared to the first derivative,∣∣∣∣∣∂

2Sr
j

∂S2
i

∣∣∣∣∣ �
∣∣∣∣∣∂S

r
j

∂Si

∣∣∣∣∣ ⇒ ∂2Sr
j

∂S2
i

≈ 0.

Under these assumptions, the above condition becomes

4
∂Sr

j

∂Si
Q∗

jQ
∗′
jSi
P ′
Q + 2(1 + Sr

j )(Q
∗′
jSi

)2P ′
Q > 0.

Since P ′
Q < 0 by the inverse demand function property and Q∗′

jSi
> 0 by the Stackelberg lead-

ership property, we finally arrive at a sufficient maximum condition for the solution (7) in the
form (7a). �

Let us present a methodology for calculating the derivatives Q∗′
jSi

in equation (7).

Proposition 3. The derivatives Q∗′
jSi

are the roots of the following system of linear equations:∑
k∈N

ajkQ
∗′
kSi

= bj , j ∈ N, (8)

where bj = −
(
∂Sr

j

∂Si
Q∗

jP
′
Q + (1 + Sr

j )Q
∗
jP

′′
QSi

C ′′
jQjSi

)
,

ajk =

⎧⎨⎩γjk + P ′
Q for j �= k

γjk + P ′
Q + (1 + Sr

j )P
′
Q for j = k,

γjk = P ′
Qk

(Q∗) + (1 + Sr
j )
{
Q∗

jP
′′
QQk

+ P ′
QQ

′
jQjQk

}
− C ′′

jQjQk
.

Proof of Proposition 3.

Assuming that the optimal actions of all environment players (system (4)) depend on Si, we
consider the n implicit functions

Fj(Q
∗, Si) = P (Q∗) + (1 + Sr

j )Q
∗
jP

′
Q − C ′

jQj
= 0, j ∈ N.

In this case, the derivatives Q∗′
jSi

of the implicit functions with several independent variables are
calculated from the following system [12]:

∑
k∈N

∂Fj

∂Qk

∂Qk

∂Si
+
∂Fj

∂Si
= 0, j ∈ N, (8a)
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where
∂Fj

∂Qk
= P ′

Q(Q
∗) + (1 + Sr

j )
{
Q∗

jP
′′
QQk

+ P ′
QQ

∗′
jQk

}
− C ′′

jQjQk
= γjk,

∂Fj

∂Si
= P ′

Q(Q
∗)Q∗′

Si
+
∂Sr

j

∂Si
Q∗

jP
′
Q

+ (1 + Sr
j )
{
Q∗

jP
′′
QSi

+ P ′
QQ

∗′
jSi

}
− CjQjSi

, Q∗′
Si

=
∑
k∈N

Q∗′
Si
.

Here, γjk stands for the component without an explicit dependence of the desired parameters Q∗′
jSi
,

further denoted by xj = Q∗′
jSi

. In this case, system (8a) has the form

∑
k∈N

γjkxk + P ′
Q

∑
k∈N

xk + (1 + Sr
j )P

′
Qxj +

∂Sr
j

∂Si
Q∗

jP
′
Q + (1 + Sr

j )Q
∗
jP

′′
QSi

−C ′′
jQjSi

= 0.

With bj = −
(
∂Sr

j

∂Si
Q∗

jP
′
Q + (1 + Sr

j )Q
∗
jP

′′
QSi

− C ′′
jQjSi

)
and

ajk =

⎧⎨⎩γjk + P ′
Q for j �= k

γjk + P ′
Q + (1 + Sr

j )P
′
Q for j = k,

we write the following system of linear algebraic equations for the unknowns xk:
∑

k∈N ajkxk = bj ,
j ∈ N , which matches (9). �

System (9) allows determining the derivatives Q∗′
jSi

as functions of the SCV values Sr
j of all

players, including the desired value Si. Thus, we have provided a method for calculating the target
SCV value of the controlled player: solve equation (7) considering the derivatives Q∗′

jSi
expressed

through Si from the solution of system (8).

5. A MECHANISM FOR CALCULATING OPTIMAL CONTROL

Consider a possible method for the environment to induce the controlled player to choose the
target SCV value Si. As an illustration, we will interpret the considerations by the example of
duopoly. Let us start with the description of the classical principle of Stackelberg leader emergence
in the game of initially equal participants (Fig. 2), i.e., from the situation of Cournot responses.
(Here, the equilibrium and Cournot responses are indicated by the symbol K.) As is known [13],
the optimal reaction functions of the players in the linear Cournot duopoly model have the form

Q1 =
α1 −Q2

2
, Q2 =

α2 −Q1

2
,

where α1 =
a−Bi

b , with a and b representing the maximum price and the rate of price reduction in
the inverse demand function, respectively, and Bi specifying the marginal cost of player i. However,
if the reaction functions were unknown to the players, they could reconstruct these functions from
observations of each other’s actions. When treated as a potential leader, the first player observes
in the game dynamics the response of the second player: the second player takes the action Qt

2 in

response to the actionM1 and the action Q
(t+1)
2 in response to the first player’s reciprocal action Qt

1.
Based on these observations, the first player (with the reaction function RK

1 ) determines the second
player’s reaction function RK

2 and calculates from it the conjectural variation (equal to the SCV in
the duopoly) as follows:

S1 = Q′
2Q1

= −1

2
.
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Q2

R1
L

R1
K

M2

Q2
t+1

Q2
t

K
L

Q2
t+1 Q2

t M1 Q1

Fig. 2. The emergence of a Stackelberg leader: an illustration.

As a result, the reaction function of the first player is transformed to

Q1 =
α1 −Q2

2 + S2
=
α1 −Q2

2− 1
2

;

and this player becomes a Stackelberg leader (in Fig. 2, its response and the corresponding equi-
librium are indicated by the symbol L). In other words, observing the response Q2 =

α2−Q1

2+0 of
the second player, the first player has revised its SCV: the SCV S2 = 0 of the second player has
induced the first player to set the SCV value S1 = −1

2 .

Extending this procedure to multilevel leadership, we can formulate the following law: for a
certain player to change its conjectural variation to some given value corresponding to a definite-
level Stackelberg leader, this player must observe another player’s action corresponding to the
response of a previous-level Stackelberg leader. Consequently, the other player must create the
so-called phantom agent acting not according to its true reaction function, so this response will be
called phantom and denoted by the symbol f . Formally, this means that to induce player i to set
the SCV value Si, the environment must act according to the phantom reaction function

Qf
j =

αj −Qi

2 + Sf
j

under the condition

Si = Qf ′
jQi

= − 1

2 + Sf
j

= Si.
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Q2

M2

Q2
(t+1)

Q2
0

R1
f

0

Et

Et+1
Et+2

R2
0

_
R2

Q1
f(t) Q1

0 Q1
(t+2) M1 Q1

Fig. 3. The informational control process: an illustration.

Hence, the SCV of the environment for this action is given by

Sf
j = − 1

Si
− 2.

This general principle was proved earlier [7] as formula (5). Based on the latter, we provide
a method for calculating the phantom response in the general case of nonlinear cost functions,
when the reaction functions cannot be expressed explicitly. Let us summarize the considerations
as follows.

Proposition 4. The environment’s phantom reaction function inducing the controlled player to
set the target SCV value Si corresponds to the environment’s SCV value Sf

j calculated by solving
the equation

Si =

⎛⎜⎜⎜⎜⎝ 1∑
j∈N\i

1

uj − Sf
j + 1

− 1

⎞⎟⎟⎟⎟⎠
−1

. (9)

Based on this principle, we describe the informational control process in the above duopoly
example, assuming that the target SCV value of the controlled (second) player is S2 = −3

4 . In other
words, the first player strives to make the second player’s response match a third-level Stackelberg
leader. (Recall that in the linear duopoly, the leaders of the first, second, and third levels have the
SCV values −1

2 ,−
2
3 , and −3

4 , respectively.) We assign the number “0” to the initial equilibrium
state, i.e., the equilibrium actions are Q0

1 and Q0
2, the SCV values of the players are S0

1 and S0
2 ,

and the reaction functions are R0
1 and R0

2. The control process is illustrated in Fig. 3.
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At the time instant t, the first player calculates its action using the phantom reaction function Rf
1

of the second-level leader: Q
f(t)
1 =

α1−Q0
2

2− 2
3

. Therefore, the game state at this instant (the point Et)

is described by the action vector (Q
f(t)
1 , Q0

2).

At the time instant t+ 1, the second player calculates S2 = −3
4 using this action and passes to

the target reaction function R2, given by the equation Qt+1
2 =

α2−Q
f(t)
1

2− 3
4

.With this reaction function,

it responds to the action Q
f(t)
1 by the action Qt+1

2 =
α2−Q

f(t)
1

2− 3
4

. At this time instant, the game state

is denoted by the point Et+1.

At the time instant t+ 2, the first player performs an action according to its true reaction

function Qt+2
1 =

α1−Qt+1
2

2+S0
2

(maximizes its utility for the initial equilibrium). For the combination

(Qt+2
1 , Qt+1

2 ), the game state is denoted by the point Et+2.

At the subsequent time instants of the game, the initial equilibrium is restored according to the
above procedure (see Fig. 2). With this procedure, the first player gains an additional utility at
the time instants t+ 1 and t+ 2 since the second player performs actions according to the SCV
target value S2.

The game state returns to the initial equilibrium in an infinite number of steps. Therefore, the
Principal’s control efficiency can be assessed by the following condition:

∞∑
τ=t

π∗(τ)e−ρτ − π∗(0)
∞∑
τ=t

e−ρτ � 0,

where π∗(0) is the Principal’s maximum utility at the initial equilibrium; π∗(τ) is the Principal’s
maximum utility at a time instant τ ; finally, ρ is the discount rate.

6. CONCLUSIONS

This paper has developed an informational control method for the actions of a given player
in an oligopoly game model: other players perform a control action inducing this player to make
an optimal response from the environment’s standpoint. The foundations of this informational
control are, first, the dependence of players’ actions on their conjectures regarding the expected
actions of counterparties and, second, the a priori unawareness of players regarding each other’s
conjectures due to the dual nature of their conjectural variations. On the one hand, the variations
are based on the analysis of the utility functions of the environment; on the other, a player cannot
ignore the nature of the responses of its environment. Therefore, the following hypothesis has been
adopted above: in the case of contradiction between these two approaches, the players estimate
the conjectural variations by each other’s actions, which are more reliable information. Under this
hypothesis, without changing its conjectural variations, the environment can perform an action as
if on behalf of a phantom player that induces the controlled player to respond in a way favorable to
the environment, and the latter interprets this action as a signal of a change in the environment’s
true reaction and performs the desired action.

The main results of this study can be summarized as follows. A hierarchical game model of
players’ interactions in an oligopoly has been presented, where the environment is treated as the
Principal and some player as a controlled object. An explicit expression has been derived for the
maximum of the environment’s utility function depending on the SCV vector of all players; this
expression allows finding the controlled player’s SCV value optimizing the environment’s utility
function. A methodology for calculating the target SCV value of the controlled player from the
environment’s standpoint has been defined. An iterative procedure has been developed to induce
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the controlled player to choose a reaction function corresponding to the target SCV value; as a
result, the environment maximizes its utility.

The optimal control problem has been formulated for an n-player game with general utility
functions. Therefore, it is impossible to obtain explicit solutions to analyze the game results in the
developed techniques and procedures. Hence, the next stage of research is to apply these general
tools to particular utility functions and carry out numerical experiments.
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Abstract—A dynamic model of passing a time-limited test is considered. The problems of
finding program and positional strategies that maximize the probability of test passing are
stated. A strategy is to complete or not complete a current test task. A positional strategy
is defined as a function of the time spent since the test start and the sum of points scored for
previous tasks. Bellman’s dynamic programming method is used to design a positional strategy.
An algorithm based on the branch-and-bound method is proposed to find an optimal program
strategy. The results of calculations are presented and compared with those of a similar problem
with a time limit (i.e., when the test is considered unpassed if the testee does not meet the
limit).

Keywords : testing model, probabilistic criterion, control design
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1. INTRODUCTION

With the modern application level of information technologies in education, it is topical to
develop, in particular, the theory of computerized adaptive testing (CAT). Its foundations were
laid at the end of the twentieth century, e.g., in the works of G. Rasch [1]. A good survey of the
state-of-the-art results in this field can be found in [2]. Conceptually CAT involves information
about the testee’s performance (the results of learning) and passing of a control event in the process
of forming the test content and deciding on test completion. (Below testees will be called subjects.)
The processing of this information and decision-making are often implemented with contemporary
machine learning and artificial intelligence techniques. The same technologies are also used to form
individual learning trajectories in learning management systems (LMSs); for example, see [3, 4].
Recent works in this area include [5–7]. Such technologies are commonly applied by test organizers
and LMS software developers. However, the testing problem can also be viewed from the subject’s
standpoint, who needs to develop an individual strategy for passing an (often, time-limited) test.
The test completion time is directly related to the subject’s response time to test tasks. Many
publications have been devoted to probabilistic models of the response time of a subject or an
LMS user to a task; for example, we refer to [8–10]. The problem of finding the subject’s optimal
strategy by the criterion of maximizing the probability of scoring a given sum of points under a
time limit was considered in [11]. A similar problem in a quantile formulation (maximizing the sum
of points scored during a test under a probabilistic time constraint) was studied in [12]. In the last
two papers mentioned, the following stochastic programming problems were solved: before a test (a
priori), a subject chooses as an individual strategy a group of tasks he/she will tackle first. Other
test tasks are performed by the subject if he/she has enough time after completing the first group
of tasks. The above formulations neglect the sequence in which a subject performs test tasks. This
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may be natural if a subject receives no information about the correctness of performing a current
task and, consequently, about the current sum of points scored. However, very often, especially in
LMS testing, e.g., [4], such information is available to a user and can be utilized by him/her during
the test. Therefore, it is relevant to consider dynamic testing models with a test passing strategy
corrected after each task considered by a subject.

This paper deals with a dynamic model of passing a fixed time-limited test by the criterion of
maximizing the probability of the subject’s scoring at least a given sum of points. The problems of
finding the subject’s program and positional strategies are stated. Algorithms are proposed to solve
these problems based on stochastic and dynamic programming methods. The resulting solutions
are compared with those obtained in [11, 12] for the same initial data.

2. DESCRIPTION OF THE MODEL AND CONTROL DESIGN PROBLEM

Consider a dynamic system describing test passing by a subject (e.g., a student). At the kth
step, the subject is asked to perform a task; in case of success, he/she is awarded bk points, k = 1, n.
It is required to score at least ϕ points to pass the test successfully. The test completion time is
limited by T̄ . The time for performing the kth task is described by a random variable τk. The
correctness of performing the kth task is described by a random variable Xk : it takes value 1 if
the kth task has been performed correctly and value 0 otherwise. A strategy is defined by a set
of variables u = (u1, . . . , un), where uk = 1 if the subject attempts to perform the kth task and
uk = 0 otherwise. Now we introduce the state variables of the dynamic system. Let Tk be the time
spent to complete the first k tasks and Sk be the sum of points scored during this time. Then the
system dynamics are described by the equations

Tk = Tk−1 + τkuk, (1)

Sk = Sk−1 + bkXkI{Tk � T̄}uk, (2)

T0 = 0, S0 = 0, k = 1, n, (3)

where I{·} denotes the indicator of the event in curly brackets, equal to 1 if the condition is satisfied
and to 0 otherwise. Thus, bk points are awarded if the subject has spent no more than T̄ units of
time on the first k tasks. Assume that all the random variables τk are discrete with a finite set Tk of
realizations and let pk(t, x) = P{τk = t,Xk = x}. In this paper, for all k = 2, n, the sigma algebra
generated by the random variables Xk and τk is supposed to be independent of the sigma algebra
generated by the random variables X1, . . . ,Xk−1 and τ1, . . . , τk−1. Such an assumption means that
the answer to the current test questions does not affect further test performance. How does the
knowledge of the correctness of performing previous tasks influence the correctness of performing
subsequent ones? This issue requires additional statistical analysis. Let S(u) be the random sum
of points scored, equal to the value Sn under the chosen control action u.

We state the problem of finding the maximum of the probability function

P 1
ϕ,T̄ (u) = P{S(u) � ϕ} → max

u∈{0,1}n
. (4)

This problem is to design a program strategy for choosing tasks to be performed under which the
subject will maximize the probability of test passing.

Now assume that the control action is chosen in the class of positional strategies. In other words,
when choosing his/her strategy at each step, the subject considers the current time spent and the
current sum of points scored for the previous tasks. We denote by uk(Tk−1, Sk−1) the subject’s
strategy at the kth step, represented by the following possible values of some function uk of the
system’s state variables: 1 if the subject tries to perform the kth task and 0 otherwise. Let u be a
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vector composed of the functions u1, . . . ,un to describe a positional strategy. We denote by S(u)
the random sum Sn of points defined by equations (1) and (2) when substituting uk = uk(Tk, Sk)
therein. Boldface is used here to distinguish the positional strategy u (a function) from the program
strategy u (a set of variables) as well as the sum S(u) of points scored by the positional strategy
from the sum Sn of points scored by the program strategy.

We state the problem of finding the maximum of the probability function under the positional
strategy:

P 2
ϕ,T̄ (u) = P{S(u) � ϕ} → max

u∈U
, (5)

u∗ = (u∗
1, . . . ,u

∗
n) ∈ Argmax

u∈U
P 2
ϕ,T̄ (u), (6)

where U is the set of admissible control functions. Since the random response time for any task
is a discrete random variable with a finite number of values and the correct answer is modeled
by the Bernoulli distribution, the number of states (Tk, Sk) at the kth step is finite. However, for
convenience of optimization, the control action uk at the kth step will be chosen as a function on
the wider set of states Tk × Sk, where Tk and Sk are some finite sets containing all possible values
of the states Tk and Sk, respectively. For this reason, U is supposed to be the set of all functions

from
n⊗

k=1
Tk × Sk into {0, 1}n.

Remark 1. In the class of program strategies, the problem of maximizing the probability of
scoring a required sum of points under a time limit was solved in [11]. In the current notation, this
problem has the form

P̃ 1
ϕ,T̄ (u) = P{S(u) � ϕ, T (u) � T̄} → max

u∈{0,1}n
, (7)

where T (u) is the random test completion time under the program strategy u. Within problem (7),
a test is considered unpassed if the subject fails to meet the time limit even when scoring the
required sum of points. There is no requirement to meet the time limit in problem (4), but no
points are awarded for performing tasks after the time T̄ . Meanwhile, the advantage of (7) is the
independence of the optimal choice of tasks from their order in the test. In problems (4) and (5),
the optimal set of tasks to be performed depends on their order. Note that the optimal value
of the objective function in problem (7) is a lower bound for those of the objective functions in
problems (4) and (5) for any task order in the test.

Remark 2. Problem (7) can be generalized to the case of positional strategies. As a result, we
obtain the problem

P̃ 2
ϕ,T̄ (u) = P{S(u) � ϕ, T(u) � T̄} → max

u∈U
, (8)

where T(u) is the random test completion time Tn defined by equations (1) when substituting
uk = uk(Tk, Sk) therein. As will be shown below, problem (5) turns out to be completely equivalent
to problem (8), in contrast to the pair of problems (4) and (7).

3. POSITIONAL CONTROL DESIGN

To solve the positional control design problem (5), we apply Bellman’s dynamic programming
method. Let us define the Bellman function for k = 1, n by the rule

Bk(Tk−1, Sk−1) = max
uk,...,un

P{S(u) � ϕ | Tk−1, Sk−1}. (9)

At the last step, the Bellman function is defined by the equality

Bn+1(Tn, Sn) = I{Sn � ϕ}. (10)
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Note the absence of dependence on Tn at the last step: it has been introduced for the convenience
of writing the dynamic programming relations. Obviously,

max
u∈U

P 2
ϕ,T̄ (u) = B1(T0, S0).

We obtain the dynamic programming relations using the formula of total probability:

Bk(Tk−1, Sk−1) = max
uk=uk(Tk−1,Sk−1)

max
uk+1,...,un

∑
t∈Tk , x∈{0,1}

P{S(u)

� ϕ | Sk = Sk−1 + bkxI{Tk−1 + tuk � T̄}uk, Tk = Tk−1 + tuk}pk(t, x)

= max
uk∈{0,1}

∑
t∈Tk , x∈{0,1}

Bk+1(Tk−1 + tuk, Sk−1 + bkxI{Tk−1 + tuk � T̄}uk)pk(t, x). (11)

The control action u∗
k(Tk−1, Sk−1) will be determined by maximizing the Bellman function at the

kth step.

Since the random variables have discrete distributions, all the functions in the dynamic pro-
gramming method are measurable, which ensures the correctness of this method.

Thus, the problem can be solved using the following algorithm, which implements dynamic
programming.

Algorithm 1 (positional control design).

1. Set k := n+ 1; for all Sn ∈ Sn calculate the value Bn+1(Tn, Sn).

2. If k > 1, set k := k − 1; otherwise, proceed to Step 4.
3. For all Tk−1 ∈ Tk−1 and Sk−1 ∈ Sk−1 calculate the value Bk(Tk−1, Sk−1) and determine

u∗
k(Tk−1, Sk−1).

4. Calculate the value B1(0, 0) and determine the control action u∗
1(0, 0) of the first step.

Note that with additionally calculating B1(t, s) at Step 4 of Algorithm 1, we will maximize the
objective functional P 2

ϕ−s,T̄−t
(u). These calculations can be carried out if the set of reachable states

of the dynamic system with the initial conditions T0 = t, S0 = s is a subset of Tk × Sk at each kth
step. Thus, it is possible to solve the problem for several values of ϕ and T̄ at once.

The above solution method allows proving the equivalence of problems (5) and (8).

Proposition 1. The optimal values of the objective functionals in problems (5) and (8) are
equal. There exist strategies optimal in both problems, namely, those satisfying the condition
u∗
k(Tk−1, Sk−1) = 0 for Sk−1 � ϕ or Tk−1 > T̄ .

Proof. To solve problem (8), we also apply the dynamic programming method. For this pur-
pose, it is necessary to define the Bellman function at the last step by the rule B̃n+1(Tn, Sn) =
I{Tn � T̄ , Sn � ϕ}. The dynamic programming relations for solving problem (8) will be the same
as (11), with the functions B̃k written instead of Bk.

Let us analyze the resulting dynamic programming relations. Note that for Tk−1 > T̄ (the
time limit is exhausted) or Sk−1 � ϕ (the required sum of points is scored), when computing
Bk(Tk−1, Sk−1) and B̃k(Tk−1, Sk−1), we can assign u∗

k(Tk−1, Sk−1) = 0 (the condition formulated in
Proposition 1).

Now let us show the following result by induction: Bk(Tk−1, Sk−1) = B̃k(Tk−1, Sk−1) for Tk−1� T̄ ,
with the presence of coincident strategies among those on which the maximum is reached, and if
Sk−1 < ϕ, then the maximum is reached on the same strategies. For k = n this assertion is true by
the definition of the above Bellman functions. Assuming its truth for Bk+1(Tk, Sk), we establish it
for Bk(Tk−1, Sk−1). If Sk−1�ϕ and Tk−1� T̄ , then Bk(Tk−1, Sk−1)= B̃k(Tk−1, Sk−1)=1 (as noted
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above, we can take u∗
k(Tk−1, Sk−1) = 0). Two cases may arise when calculating Bk(Tk−1, Sk−1) un-

der the conditions Sk−1 < ϕ and Tk−1 � T̄ : 1) If Tk>T̄ , then the equality Sk = Sk−1 holds and the
value Bk(Tk, Sk−1) = B̃k(Tk, Sk−1) = 0 is considered. 2) If Tk � T̄ , then the value Bk(Tk, Sk−1) =
B̃k(Tk, Sk−1) is considered (equality is valid by the inductive hypothesis). In both cases, we
have Bk(Tk−1, Sk−1) = B̃k(Tk−1, Sk−1) and the maximum in the definitions of Bellman functions is
achieved on the same strategies. Thus, the proof of Proposition 1 is complete.

Remark 3. Among the optimal strategies in problem (5), there may be strategies satisfying the
condition u∗

k(Tk−1, Sk−1) = 1 for Sk−1 � ϕ, which are not optimal ones in problem (8). Indeed,
when the required sum of points has been scored, performing additional tasks reduces the probabil-
ity of not exceeding the time limit, decreasing the value of the objective functional in problem (8)
compared to the value of that in problem (5).

4. PROGRAM CONTROL DESIGN

First, we describe a method for calculating the objective functional in (4) for a fixed u ∈ {0, 1}n.
Let us define the following functions:

Bu
n+1(Tn, Sn) = I{Sn � ϕ},

Bu
k (Tk−1, Sk−1) =

∑
t∈Tk , x∈{0,1}

Bu
k+1(Tk−1+ tuk, Sk−1+ bkxI{Tk−1+ tuk � T̄}uk)pk(t, x),

(12)

where k = 1, n. The value Bu
1 (0, 0) yielded by these formulas is equal to that of the probability

functional P 1
ϕ,T̄

(u). This fact follows from the definition of the Bellman function (9) since the

relations (12) are similar to the Bellman equations but without maximization and with the control
strategy uk at the kth step.

Owing to the use of dynamic relations, the above procedure is much more efficient than the
direct calculation of probability by enumerating all possible realizations of the random variables
Xk and τk.

The optimal program control can be found by enumerating all possible control actions u∈ {0, 1}n.
In this case, it is possible to eliminate the control actions for which

n∑
k=1

bkuk < ϕ : such actions do

not ensure test passing for any realizations of the random variables with a nonzero probability. Also,
we eliminate the control actions u with un = 0 because they are no worse than the corresponding
ones with un = 1. Indeed, trying to perform the last task cannot reduce the probability of test
passing.

We propose a procedure for significantly reducing the number of program control actions enu-
merated. Assume that the values of the Bellman function Bk(Sk−1, Tk−1) are known. (They can
be calculated using the algorithm from the previous section.) Let us introduce the notation

Cu1,...,uk
k,k (Tk−1, Sk−1) =

∑
t∈Tk , x∈{0,1}

Bk+1(Tk−1+ tuk, Sk−1+ bkxI{Tk−1+ tuk� T̄}uk)pk(t, x),

Cu1,...,uk
l,k (Tl−1, Sl−1) =

∑
t∈Tl, x∈{0,1}

Cu1,...,uk
l+1,k (Tl−1+ tul, Sl−1+ blxI{Tl−1+ tul� T̄}ul)pl(t, x),

l = k − 1, k − 2, . . . , 1, Ck(u1, . . . , uk) = Cu1,...,uk
1,k (T0, S0).

(13)

The value Cu1,...,uk
l,k (Tk−1, Sk−1) describes the minimum loss starting from the kth step under the

control actions u1, . . . , uk applied at the first k steps. These values are calculated from the dynamic
programming relations with fixed control actions at the first k steps. The values Ck(u1, . . . , uk)
can be used as upper bounds for the objective function.
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Proposition 2. The following relations hold for the values given by (13):

1) Ck(u1, . . . , uk) � Bu
1 (0, 0) = P 1

ϕ,T̄
(u) = Cn(u1, . . . , un).

2) Ck(u1, . . . , uk) � Ck+1(u1, . . . , uk+1) for all k = 1, n− 1.

Proof. Equations (13) are the dynamic Bellman relations with the control actions u1, . . . , uk at
the first k steps. Therefore, the value Ck(u1, . . . , uk) coincides with that of the objective functional
in problem (5) with positional control, where the control vector u has fixed components equal
to u1, . . . , uk at the first k steps and the optimally chosen components at the subsequent steps
(with respect to the state achieved in k steps). Hence, for any program control u with fixed
u1, . . . , uk, we have the inequality Ck(u1, . . . , uk) � Bu

1 (0, 0). In addition, the control vector with
fixed components u1, . . . , uk+1 gives a smaller value of the performance functional in (5) than
that with fixed components u1, . . . , uk. Therefore, we obtain Ck(u1, . . . , uk) � Ck+1(u1, . . . , uk+1)
for all k = 1, n − 1. The equality Bu

1 (0, 0) = P 1
ϕ,T̄

(u) has been established above. The proof of
Proposition 2 is complete.

Thus, if ψ < max
u∈{0,1}n

P 1
ϕ,T̄

(u) (the known lower bound for the optimal value of the objective func-

tion) and Ck(u1, . . . , uk) � ψ for some k, then by Proposition 2 we have P 1
ϕ,T̄

(u) < max
u∈{0,1}n

P 1
ϕ,T̄

(u)

and, consequently, any strategy u with the corresponding first k components is not optimal. There-
fore, Algorithm 2 based on the branch-and-bound method (see below) can be proposed to find the
program strategy. This algorithm traverses a binary tree with the following properties: the root
corresponds to the variable u1; the outgoing edges of the root, to values 1 and 0 of this variable; the
adjacent vertices of the root, to the variable u2; the outgoing edges of these vertices, to the values of
the variable u2, and so on. The vertices corresponding to the variable un have two outgoing edges
corresponding to the values of the variable un and connecting them to the leaves. A depth-first
search is applied to traverse the tree; the search can be terminated if its further execution does not
yield an optimal strategy. To describe the termination time, we introduce a function L(u1, . . . , uk) :
it takes value 0 if no further depth-first search is performed and value 1 otherwise. The variables
ψ and u∗ modified when executing the function L(u1, . . . , uk) are global.

Algorithm 2 (program control design).

0. Define the function L(u1, . . . , uk) by the following rule:

0a. Set ũ = (u1, . . . , uk, 1, . . . , 1). If
n∑

k=1
bkũk � ϕ or (k = n and un = 1), calculate Ck(u1, . . . , uk);

otherwise, return L(u1, . . . , uk) = 0.

0b. If Ck(u1, . . . , uk) � ψ, return L(u1, . . . , uk) = 0.
If k = n and Cn(u1, . . . , un) > ψ, assign ψ := Cn(u1, . . . , un) and u

∗ := (u1, . . . , un) and return
L(u1, . . . , uk) = 0.

If k = n and Cn(u1, . . . , un) � ψ, return L(u1, . . . , uk) = 0;
otherwise return L(u1, . . . , uk) = 1.

1. Set k := 1, ψ := 0, u∗ := (0, . . . , 0), and u1 := 1.

2. Calculate L(u1, . . . , uk).

3. If L(u1, . . . , uk) = 1, set k := k + 1 and uk := 1 and get back to Step 2.
If L(u1, . . . , uk) = 0 and uk = 1, set uk := 0 and get back to Step 2.
If L(u1, . . . , uk) = 0 and ul = 0 for all l = 1, k, terminate execution of the algorithm;
otherwise, assign k := max{l | ul = 1, l < k} and uk := 0 and get back to Step 2.

Algorithm 2 yields the optimal control strategy u∗ and the corresponding optimal value of the
objective function P 1

ϕ,T̄
(u∗) = ψ.
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The depth-first search of the algorithm starts from the variable values uk = 1 : in this case, the
first strategy to be considered is “perform all tasks,” which usually corresponds to a large value of
the probability of test passing.

Remark 4. Algorithm 2 can be applied to solve problem (7) as well. For this purpose, we need to
set Bn+1(Tn, Sn) = I{Tn � T̄ , Sn � ϕ} when determining the values Ck(u1, . . . , uk). In addition,
at Step 0a, it is necessary to eliminate the check (k = n and un = 1) since the optimal strategy
may have un = 0.

5. NUMERICAL RESULTS

The two problems posed were successfully solved for the data from [11]. In the test under
consideration, there are 10 tasks with the points b1 = . . . = b5 = 1, b6 = b8 = 2, b7 = b10 = 3, and
b9 = 4 scored for performing them. A subject needs to score ϕ = 11 points. The probabilities of
correct answers to each task are known. Each task is associated with three possible realizations
of the time spent on a correct answer and its three realizations for an incorrect answer; their
conditional probabilities are known and were given in [11].

Table 1 presents the solutions of problems (4) and (5) depending on the parameter T̄ . Here,
the values of T̄ are different fractions of Tm = 3830, the maximum possible time for performing
all tasks. The run times of Algorithms 2 and 1 to find program (prog.) and positional (pos.)
strategies, respectively, are indicated. The last column shows the time for solving problem (4)
when enumerating all possible program strategies, except for the obviously suboptimal ones, using
formulas (12).

Similarly, Table 2 provides the solutions of problems (7) and (8). The run times of Algorithms 2
and 1 are indicated as well. All calculations were carried out on an Acer Aspire A315-54K laptop
(Intel Core i5-6300U 2.4 GHz CPU, 8Gb RAM).

Table 1. The solutions of problems (4) and (5) depending on the parameter T̄ for ϕ = 11

T̄
Optimal program

strategy u∗ P 1
ϕ,T̄

(u∗)
max
u∈U

P 2
ϕ,T̄

(u)

Run time,
prog./pos. (s)

Run time,
enumeration

(s)

0.4Tm (0, 0, 0, 0, 1, 1, 1, 1, 0, 1) 0.1447 0.1689 0.83 / 0.08 1.69

0.5Tm (1, 1, 1, 0, 1, 1, 1, 1, 0, 1) 0.3583 0.4220 0.45 / 0.07 1.78

0.6Tm (1, 0, 1, 1, 1, 1, 1, 1, 0, 1) 0.5244 0.6130 0.53 / 0.07 1.93

0.7Tm (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 0.6906 0.7242 0.28 / 0.07 2.17

0.8Tm (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.7815 0.7876 0.11 / 0.08 2.34

0.9Tm (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.8006 0.8007 0.15 / 0.07 2.64

Table 2. The solutions of problems (7) and (8) depending on the parameter T̄ for ϕ = 11

T̄
Optimal program

strategy u∗ P̃ 1
ϕ,T̄

(u∗)
max
u∈U

P̃ 2
ϕ,T̄

(u)

Run time,
prog./pos. (s)

Run time,
enumeration

(s)

0.4Tm (0, 0, 0, 0, 1, 1, 1, 1, 0, 1) 0.1447 0.1689 0.99 / 0.08 3.47

0.5Tm (1, 0, 1, 0, 1, 1, 1, 1, 0, 1) 0.2460 0.4220 3.02 / 0.07 3.45

0.6Tm (1, 1, 1, 0, 1, 1, 1, 1, 0, 1) 0.4963 0.6130 1.49 / 0.07 3.45

0.7Tm (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) 0.6059 0.7242 0.64 / 0.07 3.46

0.8Tm (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 0.7216 0.7876 0.63 / 0.07 3.41

0.9Tm (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.7965 0.8007 0.14 / 0.07 3.42
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According to these tables, positional strategies have an advantage over program ones, not only in
terms of the optimal value of the objective functional but also in terms of the speed of computation.
Comparing problem (4) with the one from [11], we note that, as a rule, the solution of (4) implies
a larger number of subproblems and a larger value of the objective functional. This is due to the
absence of a time limit in problem (4).

As mentioned earlier, the solution of (4) and (5) depends on the order of test tasks. Therefore,
additional calculations of the strategies for passing the same test, but with the reverse order of
tasks, were performed: the first task of the test was made the tenth, the second the ninth, and so
on. The points awarded for the tasks and the probabilities of performing the tasks remained the
same. The results of solving this problem are described in Table 3. For convenience of comparing
the tables, the components of the optimal program strategies are given in reverse order. The run
times of the algorithms are omitted here because they insignificantly differ from the ones in Table 1.
Direct comparison of the solutions shows that the values of the objective functions changed slightly
with the reverse order of the tasks, and the program strategy differs for the time limits 0.4Tm

and 0.6Tm.

Table 3. The solutions of problems (4) and (5) depending on the parameter T̄ for ϕ = 11:

the reverse order of tasks

T̄
Optimal program

strategy (u∗10, . . . , u
∗
1)

P 1
ϕ,T̄

(u∗) max
u∈U

P 2
ϕ,T̄

(u)

0.4Tm (1, 0, 1, 0, 1, 1, 1, 1, 0, 1) 0.1639 0.1787

0.5Tm (1, 1, 1, 0, 1, 1, 1, 1, 0, 1) 0.3526 0.3834

0.6Tm (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) 0.5340 0.5718

0.7Tm (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 0.6781 0.7003

0.8Tm (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.7824 0.7847

0.9Tm (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.8007 0.8007

6. CONCLUSIONS

In this paper, we have found program and positional strategies for passing a time-limited test
in which a testee (subject) knows the current sum of points scored after performing each task.
Algorithms for solving these problems have been proposed and their effectiveness has been demon-
strated. The results have been compared with those of the problem statement considered by one
of the authors previously. According to the analysis, with the current sum of points being known
to a subject, there is a test passing strategy under which the subject will exceed the required level
with a higher probability.

Future research may deal with various modifications of this model. In particular, the dependence
of the results of performing test tasks on the current sum of points scored can be considered.
Such a dependence arises due to the psychological peculiarities of some subjects. The possibility
of modifying the Bellman equations (11) in this case needs to be investigated. Also, it seems
interesting to describe the response time of subjects (their answers to test tasks) by continuous
random variables and to study the solution accuracy in the discretization case.
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